A division of Rig Technology Limited A Varco® Company



THULE RIGTECH

**VSM 100** 

LINEAR MOTION SHALE SHAKER

**OPERATING MANUAL** 

# THULE RIGTECH

# **VSM 100**

# LINEAR MOTION

# SHALE SHAKER

# **OPERATING MANUAL**



VSM 100 LINEAR MOTION SHALE SHAKER

**OPERATING MANUAL** 



## 1.0 GENERAL EQUIPMENT DETAILS

- 1.1 Introduction
- 1.2 Equipment Description
- 1.3 Description of Main Components
- 1.4 Principle of Operation
- 1.5 Strength of Components

## 2.0 TECHNICAL SPECIFICATION

- 2.1 Equipment Specification
- 2.2 Electrical Specification
- 2.3 Paint Specification
- 2.4 Recommended Cable Specification
- 2.5 Screen Data
- 2.6 Torque Setting Chart
- 2.7 Recommended Lubricants
- 2.8 Noise Data

### 3.0 **INSTALLATION**

- 3.1 Unpacking, Lifting and Handling Instructions
- 3.2 Installation
- 3.3 Utility Requirements
- 3.4 Retrofit Installations
- 3.5 Mechanical Installation
- 3.6 Electrical Installation



### LINEAR MOTION SHALE SHAKER

### **OPERATING MANUAL**

**INDEX** (Continued)

### 4.0 **COMMISSIONING**

- 4.1 Pre-Commissioning Procedures
- 4.2 Commissioning Procedures
- 4.3 Screen Fitting Procedure

## 5.0 **OPERATION**

- 5.1 General
- 5.2 Screen Fitting Procedure
- 5.3 Unit Start-Up Procedure
- 5.4 Unit Shut-Down Procedure
- 5.5 Troubleshooting

## 6.0 **MAINTENANCE**

- 6.1 Useful Maintenance Procedures
- 6.2 Routine Maintenance
- 6.3 Part Replacement Procedures

### 7.0 SCREEN INFORMATION

- 7.1 Screen Specifications
- 7.2 Screen Selection
- 7.3 Screen Repair Procedure
- 7.4 Screen Storage



### LINEAR MOTION SHALE SHAKER

### **OPERATING MANUAL**

## (Continued)

## 8.0 PARTS LIST

- 8.1 Basket Assembly and Screen Clamping Assembly
- 8.2 Vibratory Drive Unit
- 8.3 Clamping System
- 8.4 Tensioner, Shaft and Drive Assembly
- 8.5 Electric Starter Box
- 8.6 Basic Maintenance Equipment

## 9.0 **DRAWINGS**

| 100-100 | Basket Assembly Sheets 1 & 2             |
|---------|------------------------------------------|
| 100-101 | Vibratory Drive Unit MK IV               |
| 100-102 | Clamping System Assembly                 |
| 100-103 | Drive Assembly                           |
| 107-108 | Outrigger Bearing Installation Procedure |
| 107-109 | JL4/3 Twin Starter Box Assembly          |
| 107-110 | JL4/3 Twin Starter Wiring Diagram        |
| 107-130 | Vibratory Head Rotation Direction        |
| 107-133 | VSM 100 Bonding Arrangement              |
| 107-149 | Component Lifting Diagram                |
|         |                                          |



VSM 100 LINEAR MOTION SHALE SHAKER OPERATING MANUAL

# SECTION 1.0 -

## GENERAL EQUIPMENT DETAILS

## **INDEX**

| 1.1 | Introduction |
|-----|--------------|
|     |              |

- 1.2 Equipment Description
- 1.3 Description of Main Components
- 1.4 Principle of Operation
- 1.5 Strength of Components



## LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

### SECTION 1.0 - GENERAL EQUIPMENT DETAILS

### 1.1 **INTRODUCTION**

The VSM 100 Shale Shaker is well proven to meet the demands of the oilfield drilling industry and is purpose built to provide a more efficient primary solids removal system.

### 1.2 EQUIPMENT DESCRIPTION

The VSM 100 Shale Shaker is designed on a modular basis thus enabling multi unit installations and flexible configurations to be achieved using standard equipment. The modular design construction is also advantageous on existing rig locations where the equipment can be easily installed into the shaker room through a standard shaker house door.

### 1.3 **DESCRIPTION OF MAIN COMPONENTS**

### 1.3.1 Basket/Head Assembly

The basket/head assembly is supplied in accordance with Thule Rigtech standard equipment design and manufacturing process. The vibratory head is fitted with two (2) electric motors which have been manufactured by Brook Hansen in accordance with Thule Rigtech's standard electric motor specification.

The electric motors drive counter rotating shafts which induce vibration into the basket/head assembly. The basket is mounted onto the skid base via four (4) springs.

### 1.3.2 Skid Base

The skid base is manufactured to form a fluid sump and is located under the basket/head assembly. It is used to collect the processed mud before it is returned to the mud tanks.

Each skid base is manufactured with two (2) exit gates, one at each side, which enables the mud to flow into either an adjacent link section or a site built ditch.



### LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

### 1.3 **DESCRIPTION OF MAIN COMPONENTS** (Continued)

### 1.3.3 Link Sections

The link sections between the shale shakers are used for the following functions:

Comment:

- Distribution of mud between skid bases
- Header tank dump/bypass facility
- Access walkway between shale shakers

The various options are achieved by opening/closing the appropriate sluice gates on the link section to divert the mud flow as required.

### 1.3.4 Header Tank Assembly

The header tank units supplied with standard equipment are of a shallow modular design with the following options available:

- Header tank only
- Header tank with splitter box
- Header tank link section
- Header tank link section complete with dump valve
- Header tank link section complete with splitter box and dump valve
- Feed chutes

The configuration of the header tank assembly will be dependent on the number of shale shakers installed.

### 1.3.5 **<u>HVAC Enclosures</u>** (where applicable)

The HVAC enclosures mounted onto the shale shakers are in accordance with Thule Rigtech standard design and manufacture but with the interface connection on the duct outlet modified to suit project requirements.

The HVAC enclosure is supplied with access doors at the front and on each side for operational and maintenance requirements.



## LINEAR MOTION SHALE SHAKER

### **OPERATING MANUAL**

### 1.3 **DESCRIPTION OF MAIN COMPONENTS** (Continued)

### 1.3.6 <u>Screens</u>

The wire mesh screen panels used on the VSM 100 Shale Shaker can be easily changed out to suit operational conditions.

The following screen types are used:

• <u>Top Deck Screens</u> (Scalping Screen)

The top deck of the VSM 100 has a hook strip screen which is used to scalp off large volumes of solids thus protecting the finer mesh on the lower deck screens. This is achieved by using a top screen with mesh sizes ranging from 8 - 30. Manual tensioning is achieved using tensioning bolts located on each side of the top frame.

• <u>Lower Deck Screens</u> (Primary)

The lower deck screen configuration on the VSM 100 comprises four (4) multipanel pretensioned screens. The two (2) screens at the rear of the shale shaker are mounted horizontally and the two (2) screens at the front are ramped. This screen configuration enables a larger surface area to be covered by a larger head of fluid. This results in a higher throughput capacity.

The lower screens are retained in position by a pneumoseal clamping system which enables a fast changeout of screens to be achieved.

• <u>Secondary Screens</u> (Drying Screens)

Optional mounting carriers are provided to enable secondary screens to be fitted to the front of the lower deck screens. This facility should be used to reduce fluid levels on cuttings when drilling with low toxicity or synthetic oil based muds.

The secondary screens are fitted onto mounting carriers with four (4) bolt assemblies.



## LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

## 1.4 **PRINCIPLE OF OPERATION**

The configuration on each installation will vary depending on final equipment layout but the basic principle of operation is simple.

The mud return flowline is diverted into the splitter box on the header tank and the mud is evenly distributed into the main header box section by manually operating the. sliding gate valves which are located between the splitter box and the header tank.

The flow over each shaker is regulated by operating the three (3) sliding gate valves which are located at the feed chute/header tank interface. The processed mud flows through the shale shaker and is discharged back to the mud distribution gutter via the skid base outlet gates.

The cuttings from the shale shaker are transported over the screens to the front of the unit and discharged into the cuttings ditch. The shale shaker package has the facility to divert mud returning through the flowline directly into the cuttings ditch by closing the isolation gate valves within the main header tank and opening the dump valve in the bypass link section.

The VSM100 has the optional facility of being fitted with a specifically designed HVAC enclosure should this be required. The design of the enclosure is such that any fumes are contained within the enclosure whilst still allowing adequate access to the equipment for operational and maintenance activities.

### 1.5 STRENGTH OF COMPONENTS

The VSM 100 shale shaker was subjected to extensive testing during the final design stages, under actual working conditions, to confirm suitability of component materials.

The shale shakers have also undergone various minor design upgrades to ensure the equipment meets the requirements of the operating environment.

All the materials used in the manufacture of the shale shaker components are new and of suitable strength to meet the applied working conditions.



VSM 100 LINEAR MOTION SHALE SHAKER OPERATING MANUAL

# SECTION 2.0 -

## **TECHNICAL SPECIFICATION**

## **INDEX**

| 2.1 | Equipment Specification         |
|-----|---------------------------------|
| 2.2 | Electrical Specification        |
| 2.3 | Paint Specification             |
| 2.4 | Recommended Cable Specification |
| 2.5 | Screen Data                     |
| 2.6 | Torque Setting Chart            |
| 2.7 | Recommended Lubricants          |
| 2.8 | Noise Data                      |
|     |                                 |



## LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

### SECTION 2.0 - TECHNICAL SPECIFICATION

### **IMPORTANT NOTE**:

The Specification below relates to Thule Rigtech's **STANDARD** VSM 100 Shale Shaker. All components listed are manufactured as standard items.

Different electrical and dimensional/weight configurations are available and the customer should contact Thule Rigtech directly for information on these.

The specifications were correct at time of printing. However, Thule Rigtech's policy is one of continuous development and therefore Thule Rigtech reserve the right to amend the equipment specification at their discretion. Thule Rigtech accept no liability for loss or damage incurred through the use of the data attached. It is recommended that the customer contact Thule Rigtech for a current status if in doubt.

### 2.1 EQUIPMENT SPECIFICATION

### 2.1.1 General

|       | Equipment Type             | - | Linear Motion Shale S                    | Sha  | ker                                       |
|-------|----------------------------|---|------------------------------------------|------|-------------------------------------------|
|       | Vibratory Motion Type      | - | Linear                                   |      |                                           |
|       | Angle of Motion            | - | Fixed                                    |      |                                           |
|       | Speed of Vibration         | - | Fixed                                    |      |                                           |
| 2.1.2 | Screening Arrangement      |   |                                          |      |                                           |
|       | Screen Configuration       | - | Dual Deck                                |      |                                           |
|       | Screen Type                | - | Scalping                                 | -    | Removable Hook Strip                      |
|       |                            | - | Primary                                  | -    | Pretensioned Multi-<br>Panel : Repairable |
|       |                            | - | Secondary                                | -    | Pretensioned Panel                        |
|       | Solids Drying Deck         | - | Optional Secondary<br>Screen Module (Sup | plie | ed)                                       |
|       | Scalping Screen Tensioning | - | Mechanical                               | -    | Hook Strip                                |
|       | Primary Screen Clamping    | - | Pneumatic                                |      |                                           |
|       | Secondary Screen Clamping  | - | Mechanical                               | -    | Bolted fixing                             |



## LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

#### 2.1 **EQUIPMENT SPECIFICATION** (Continued) 2.1.2 **Screening Arrangement** (Continued) - 0° Screen Angles Scalping \_ Primary (rear) - 0° \_ Primary (front) - 10° -- 5° Secondary \_ Screen Angle Adjustment No - Fixed \_ $-1.39 \text{m}^2 / 15 \text{ ft}^2$ Screen Areas Scalping Screen Deck \_ -2.04m<sup>2</sup> / 22 ft<sup>2</sup> Primary Screen Deck \_ Secondary Screen Deck - $0.28m^2/3$ ft<sup>2</sup> Refer to Section 2.5 Mesh Sizes 2.1.3 Drive System Drive System Electrically Operated - Belt Driven -2.1.4 Air System - 80 - 90 psi Air Supply Requirements Pressure - $0.5 \text{ ft}^3 \text{m/in (intermittent)}$ (for Pneumoseal Clamping System)-Capacity 2.1.5 **Dimensions** Type of Unit: Length: Width: Height: Single 2715 mm 1870 mm 1504 mm Dual 2715 mm 4070 mm 1504 mm Triple 6270 mm 1504 mm 2965 mm 8470 mm Quadruple 2965 mm 1504 mm Quintuple 2965 mm 10670 mm 1504 mm N.B.

**N.B.** The above dimensions for triple, quadruple and quintuple units are based upon the header box being fitted with a 420 mm wide splitter box.

Please contact Thule Rigtech for details of this feature.



### LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

## 2.1 **EQUIPMENT SPECIFICATION** (Continued)

### 2.1.6 Dry Operating Weights

| Single Unit    | - | 2080 | ) kg     |
|----------------|---|------|----------|
| Dual Unit      | - | 4420 | ) kg     |
| Triple Unit    | - | 6845 | 5 kg     |
| Quadruple Unit | - | 9100 | ) kg     |
| Quintuple Unit |   | -    | 11360 kg |

**N.B.** The above weights for triple, quadruple and quintuple units are based upon the header box being fitted with a 420 mm wide splitter box. Please contact Thule Rigtech for details of this feature.

### 2.1.7 <u>Screens</u> - Boxed for Shipping

| Scalping (Top) Screen  | - | 8.5 kg  |
|------------------------|---|---------|
| Primary (Lower) Screen | - | 13.5 kg |
| Secondary Screen       | - | 4 kg    |



LINEAR MOTION SHALE SHAKER

**OPERATING MANUAL** 

## 2.2 ELECTRICAL SPECIFICATION

### 2.2.1 Drive Motor Specification

| Make              | - | Brook Hansen (Argus 55) IP56 (Specification adapted<br>and modified to meet Thule Rigtech Requirements) |              |     |              |
|-------------------|---|---------------------------------------------------------------------------------------------------------|--------------|-----|--------------|
| Certification     | - | BASEEFA to BS5501 Parts 1 & 5<br>FExd                                                                   |              |     |              |
|                   | - | Gas Group                                                                                               | -            | IIB |              |
|                   | - | Temperature                                                                                             | -            | T4  |              |
| Rating            | - | 1.65kW                                                                                                  |              |     |              |
| Voltage           | - | 460V / 380V                                                                                             |              |     |              |
| Frequency         | - | 60Hz / 50Hz                                                                                             |              |     |              |
| Phase             | - | 3                                                                                                       |              |     |              |
| Full Load Current | - |                                                                                                         | <u>60 Hz</u> | _   | <u>50 Hz</u> |
|                   |   | 380V                                                                                                    | N/A          |     | 4.3A         |
|                   |   | 400V                                                                                                    | 4.0A         |     | 4.1A         |
|                   |   | 415V                                                                                                    | N/A          |     | 3.9A         |
|                   |   | 440V                                                                                                    | 3.8A         |     | 3.8A         |
|                   |   | 460V                                                                                                    | 3.6A         |     | 3.7A         |
|                   |   | 480V                                                                                                    | 3.4A         |     | N/A          |
| Full Load Speed   | - | 1720 RPM                                                                                                |              |     |              |
| Frame Size        | - | AENV100LBC                                                                                              |              |     |              |

## 2.2.2 Motor Starter Specification

| Make               | - | MEDC                                 |
|--------------------|---|--------------------------------------|
| Certification      | - | BASEEFA to BS5501 Parts 1 & 5        |
|                    | - | EExd                                 |
|                    | - | Gas Groups - IIA & IIB               |
|                    | - | Temperature - T6                     |
| Approx. Dimensions | - | (W) 306 mm x (H) 266 mm x (D) 352 mm |
| Approx. Weight     | - | 52 kg (including internal equipment) |
| Material           | - | Grey Iron                            |
| Paint Finish       | - | 2 pack epoxy. Colour Pewter          |
| Ingress Protection | - | In accordance with IP65              |



## LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

## 2.2 <u>ELECTRICAL SPECIFICATION</u> (Continued)

### 2.2.3 Motor Starter Internal Equipment

| Main Fuses       | - | NSD type to BS88 16 amp rated                                   |  |  |
|------------------|---|-----------------------------------------------------------------|--|--|
| Control Fuses    | - | Primary - Cartridge type to IEC 269-1 and IEC269-2, 1 amp rated |  |  |
|                  | - | Secondary - Cartridge type to IEC127,<br>2 amp rated            |  |  |
| Contactors       | - | 4.5 kW AC3 DOL 3 pole                                           |  |  |
| Overload Relay - |   | Thermal type adjustable from:                                   |  |  |
|                  |   | 2.7 amp to 4 amp for 415 - 480V                                 |  |  |
|                  |   | 4 amp to 6 amp for 380 - 440V                                   |  |  |
|                  | - | Reset Auto/Hand selectable                                      |  |  |
| Supply Voltage   | - | Suitable for - 380 / 440V 50 Hz<br>415 / 480V 60 Hz             |  |  |

## Motor Starter Comprises:

| Six (6)      | Main Fuses (F1 to F6) (16 amp rated)                                                              |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------|--|--|--|--|
| Two (2)      | Contactors (C1 and C2)                                                                            |  |  |  |  |
| Two (2)      | N/C Auxiliary Contact Block (1 per contactor)                                                     |  |  |  |  |
| Two (2)      | Thermal Overload Relays (OL/1 and OL/2)                                                           |  |  |  |  |
| One (1)      | 1 N° 110 V Stepdown Transformer                                                                   |  |  |  |  |
| Three (3)    | Control Fuses: two (2) - Primary PF1 & PF2 (1 amp rated)<br>one (1) - Secondary CF1 (2 amp rated) |  |  |  |  |
| One (1)      | Neutral Link                                                                                      |  |  |  |  |
| Fifteen (15) | Terminals: Type DK4Q                                                                              |  |  |  |  |
| -            | Unit c/w ten (10) M20 cable entries: 2 on left hand side face                                     |  |  |  |  |
|              | 2 on right hand side face                                                                         |  |  |  |  |
|              | 6 on bottom face                                                                                  |  |  |  |  |
|              |                                                                                                   |  |  |  |  |



## LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

## 2.2 <u>ELECTRICAL SPECIFICATION</u> (Continued)

### 2.2.4 Remote Push-Button Unit Specification

| Make               | -           | MEDC                                                              |
|--------------------|-------------|-------------------------------------------------------------------|
| Certification      | -<br>-<br>- | PTB No. EX85/1024<br>EExde<br>Gas Group - IIC<br>Temperature - T6 |
| Approx. Dimensions | -           | (W) 90 mm x (H) 168 mm x (D) 130 mm                               |
| Approx. Weight     | -           | 1.0 kg                                                            |
| Material           | -           | Glass reinforced polyester                                        |
| Ingress Protection | -           | IP65                                                              |
| Contact Ratings    | -           | AC11 500V 2.5 amp                                                 |
| Unit Comprises:    | -           | One (1) Start push-button (Momentary)                             |
|                    | -           | One (1) Stop latched mushroom-button (Stay put)                   |
|                    | -           | Unit c/w two (2) M20 cable entry                                  |

## 2.2.5 <u>Emergency Stop Station Specification</u>

| Make               | -           | MEDC                                              |                                                       |
|--------------------|-------------|---------------------------------------------------|-------------------------------------------------------|
| Certification      | -<br>-<br>- | PTB No: Ex 8<br>EExde<br>Gas Group<br>Temperature | - IIC<br>- T6                                         |
| Ingress Protection | -           | In accordance                                     | with IP65                                             |
| Material           | -           | Glass reinforc                                    | ed Polyester                                          |
| Approx. Weight     | -           | 0.5 kg                                            |                                                       |
| Dimensions         | -           | (W) 90mm x (                                      | H) 100mm x (D) 135mm                                  |
| Internal Equipt.   | -           | One (1)                                           | Latched Mushroom Button<br>(Stayput) (Emergency Stop) |
| Entries            | -           | Two (2)                                           | (1 x bottom, 1 x top - plugged) M20                   |



### LINEAR MOTION SHALE SHAKER

### **OPERATING MANUAL**

## 2.2 <u>ELECTRICAL SPECIFICATION</u> (Continued)

### 2.2.6 Safety Isolator Specification

| Make               | -           | ABB                                                                            |
|--------------------|-------------|--------------------------------------------------------------------------------|
| Certification      | -<br>-<br>- | PTB No. Ex 88.B.1048<br>EExde<br>Gas Group - II C<br>Temperature - T6          |
| Ingress Protection | -           | In accordance with IP65 to IEC529                                              |
| Material           | -           | EN Polyamide                                                                   |
| Approx Weight      | -           | 1.6 kg                                                                         |
| Dimensions         | -           | (W)110mm x (H) 150mm x (D)160mm                                                |
| Туре               | -           | 4 Pole + Auxiliary                                                             |
|                    |             | Safety switch with lock off facility and cover interlock in the 'OFF' position |
| Rated Current      | -           | 20amps                                                                         |
| Rated Voltage      | -           | 690V a.c.                                                                      |
| Ambient Temp.      | -           | (-20) to (+40) °C                                                              |
| Area of Use        | -           | Zones 1 and 2                                                                  |
| Entries            | -           | Two (2) (bottom) M20                                                           |



LINEAR MOTION SHALE SHAKER

**OPERATING MANUAL** 

## 2.3 **PAINT SPECIFICATION**

| Manufacturer        | - | W & J Leighs & Co.               |                                                                               |
|---------------------|---|----------------------------------|-------------------------------------------------------------------------------|
| Surface Preparation | - | Shotblasted to SA $2\frac{1}{2}$ |                                                                               |
| Coating Systems     | - | Two Pack Epoxy                   |                                                                               |
| Colours             | - | Thule Green (R4754)              |                                                                               |
|                     | - | Golden Yellow (BS4800 : 08       | .6.51)                                                                        |
| Description         | - | Primer: Epigrip J984 -           | Two pack Epoxy zinc rich anti-corrosive primer                                |
|                     | - | High Build: Epigrip L653 -       | Two Pack Epoxy/Resin<br>hi-build containing anti-<br>corrosive pigments       |
|                     | - | Top Coat: Epigrip M262 -         | Two Pack Epoxy/Resin<br>pigmented with high<br>quality light fast<br>pigments |
| DFT                 | - | Primer - 50 m                    | nicrons                                                                       |
|                     | - | High Build - 150 m               | iicrons                                                                       |
|                     | - | Top Coat - 50 m                  | nicrons                                                                       |



LINEAR MOTION SHALE SHAKER

**OPERATING MANUAL** 

## 2.4 **<u>RECOMMENDED CABLE SPECIFICATION</u>**

| Туре              | :    | 6EXOL - 125                                                                       | IEC 600V / 1000V                                                                                                                                                              |
|-------------------|------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Size              | :    | 2.3 mm <sup>2</sup> (14                                                           | 4 AW6)                                                                                                                                                                        |
| No. of Conductors | :    | 4                                                                                 |                                                                                                                                                                               |
| Part Ref          | :    | U37 - 1-2 - 50                                                                    | 09 BS                                                                                                                                                                         |
| Nominal O/D       | :    | 15.7 mm                                                                           |                                                                                                                                                                               |
| Approvals         | :    | UL<br>Lloyds<br>DNV<br>CSA<br>ABS<br>CCG<br>USCG                                  | E111461<br>89/0075<br>E - 1675 through E - 1678<br>LL80350<br>93 - BT52174 - X<br>9400 - 20<br>1987 / 9304                                                                    |
| Construction      | : i) | Conductor                                                                         | Soft annealed tinned copper per ASTM<br>B-33. Flexible stranding to Class S<br>(IEC 228)                                                                                      |
|                   | ii)  | Insulation                                                                        | Chemically cross linked, non chlorinated<br>thermosetting flame retardant polyolefin<br>(XLPO)                                                                                |
|                   | iii) | Armour                                                                            | Basket weave wire armour per IEEE 45 and IEC 92-3, Bronze                                                                                                                     |
|                   | iv)  | Base Jacket                                                                       | Heavy duty Arctic grade neoprene                                                                                                                                              |
|                   | v)   | Outer Jacket                                                                      | Same as base jacket                                                                                                                                                           |
| Properties        | :    | Flame retarda<br>Temperature F<br>Flame test me<br>and IEC 332-<br>Tested for con | nt tested in accordance with IEEE 45 UL<br>rating 100°C<br>cets requirements of IEEE 45, IEC 92-3<br>3<br>mpatibility with PETROFREE,<br>POMUL and XP.07 muda and base fluids |
| Application       | :    | For machine i                                                                     | installations with presence of vibrations                                                                                                                                     |
|                   |      | on mobile dri<br>fixed and floa                                                   | lling units, aboard ships and offshore ting production facilities.                                                                                                            |



## LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

## 2.5 SCREEN DATA

### 2.5.1 Scalping Screens

| Part No:  | Aperture (Microns):                                                 | <u>Open Area %:</u>                                                           |
|-----------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 100/SS/08 | 2465                                                                | 60                                                                            |
| 100/SS/10 | 1976                                                                | 61                                                                            |
| 100/SS/20 | 895                                                                 | 49                                                                            |
| 100/SS/30 | 567                                                                 | 45                                                                            |
|           | <u>Part No:</u><br>100/SS/08<br>100/SS/10<br>100/SS/20<br>100/SS/30 | Part No:Aperture (Microns):100/SS/082465100/SS/101976100/SS/20895100/SS/30567 |

## 2.5.2 Primary Screens

| Mesh Size: | Part No:    | Aperture (Microns): | Open Area %: |
|------------|-------------|---------------------|--------------|
| 52         | 100/PRI/52  | 340                 | 48           |
| 84         | 100/PRI/84  | 215                 | 49           |
| 105        | 100/PRI/105 | 165                 | 45           |
| 120        | 100/PRI/120 | 150                 | 49           |
| 145        | 100/PRI/145 | 120                 | 46           |
| 165        | 100/PRI/165 | 105                 | 45           |
| 180        | 100/PRI/180 | 91                  | 42           |
| 200        | 100/PRI/200 | 87                  | 47           |
| 230        | 100/PRI/230 | 75                  | 46           |

## 2.5.3 Secondary Screens

| Mesh Size: | Part No:     | Aperture (Microns): | <u>Open Area %:</u> |
|------------|--------------|---------------------|---------------------|
| 100H       | 100/SEC/100H | 557 x 184           | 40                  |
| 84         | 100/SEC/80   | 215                 | 49                  |

**N.B.** The above are STANDARD specification screens. Other screen specifications are available on request. Please contact Thule Rigtech for details.



LINEAR MOTION SHALE SHAKER

**OPERATING MANUAL** 

## 2.6 **TORQUE SETTING CHART**

All bolts and threads on the equipment are of metric sizes and constructed from high tensile stainless steel (U.O.N.)

| M 8                                          | - | 34 Nm  | ( 25 lbf.ft) |
|----------------------------------------------|---|--------|--------------|
| M10                                          | - | 68 Nm  | ( 50 lbf.ft) |
| M12                                          | - | 118 Nm | ( 87 lbf.ft) |
| M16                                          | - | 293 Nm | (216 lbf.ft) |
| M20                                          | - | 570 Nm | (420 lbf.ft) |
| <sup>3</sup> /8" BSW (Taperlock Grub Screw)  | - | 20 Nm  | ( 15 lbf.ft) |
| <sup>7</sup> /16" BSW (Taperlock Grub Screw) | - | 30 Nm  | ( 22 lbf.ft) |

## 2.7 **<u>RECOMMENDED LUBRICANTS</u>**

| Main Shaft Bearings     | - | Shell Retinax LX2 |
|-------------------------|---|-------------------|
| Outrigger Bearings      | - | Sealed for life   |
| Belt Tensioner Roller   | - | Sealed for life   |
| Electric Motor Bearings | - | Sealed for life   |

### 2.8 NOISE DATA

Noise data was obtained from a noise test carried out on a single VSM 100 Shale Shaker unit which was operating under test conditions only.

|      |      |      | OC   | TAVE | BAND | CENT | RE FRI | EQUEN | ICY  |      |
|------|------|------|------|------|------|------|--------|-------|------|------|
| LIN  | dBA  | 31.5 | 63   | 125  | 250  | 500  | 1k     | 2k    | 4k   | 8k   |
| 80.0 | 79.5 | 68.3 | 57.3 | 70.6 | 66.1 | 68.4 | 75.8   | 73.1  | 70.4 | 64.2 |

Note: The sound pressure levels are measured at 1m and are the logarithmic mean of measurement results from five (5) locations around the Shaker.



VSM 100 LINEAR MOTION SHALE SHAKER OPERATING MANUAL

# SECTION 3.0 -

# INSTALLATION

## **INDEX**

| 3.1 | Unpacking, Lifting and Handling Instructions |
|-----|----------------------------------------------|
| 3.2 | Installation                                 |
| 3.3 | Utility Requirements                         |
| 3.4 | Retrofit Installations                       |
| 3.5 | Mechanical Installation                      |
| 3.6 | Electrical Installation                      |
|     |                                              |



# LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

### **SECTION 3.0 - INSTALLATION**

## 3.1 UNPACKING. LIFTING and HANDLING INSTRUCTIONS

### 3.1.1 Introduction

This section details the unpacking, lifting and handling instructions for Thule Rigtech Standard VSM 100 Shale Shaker equipment

## 3.1.2 Unpacking

The equipment will be delivered to site as palletised units and will consist of the following packages:

- Shale Shaker Assemblies comprising Vibratory Head/Basket with or without the skid base and header tank
- Link Section(s)

The total number of packages delivered will depend on the quantity and configuration of the system required. Final packing details will be available on dispatch.

The equipment shall be unpacked by removing the polythene protective outer cover and by cutting the fixing bands which are used to retain the equipment onto the pallets.

### Note: Transportation brackets are used to retain the basket onto the skid base and these should remain secured in position until the equipment is sited in its final location.



## LINEAR MOTION SHALE SHAKER

### **OPERATING MANUAL**

### 3.1 <u>UNPACKING, LIFTING and HANDLING INSTRUCTIONS</u> (Continued)

### 3.1.3 Lifting and Handling

The VSM 100 shaker is designed on a modular basis and can be dis-assembled into the following discrete components for installation (if required):

| Description: | Lifting Method:                                                                                                            | Notes:                                                                    |
|--------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Head Assy.   | Soft slings around the drive head cross-tube                                                                               | -                                                                         |
| Basket Assy. | Soft slings around the basket or<br>alternatively four (4) x Lifting Eyebolts<br>can be fixed to the basket spring mounts. | Spring mounting<br>may be removed<br>to further reduce<br>the basket size |
| Note :       | If eyebolts are used please ensure full certification i                                                                    | is available.                                                             |

### Warning: Basket assembly must not be lifted by top frame or vibratory head

| Top Frame      | Soft slings/man-handle                                                  |
|----------------|-------------------------------------------------------------------------|
| Header Tank    | Soft slings around the box section cross members at the top of the tank |
| Skid Base      | Four (4) x padeyes - One (1) at each corner                             |
| Feed Chute     | Soft slings/man-handle                                                  |
| For details of | lifting configurations refer to Drawing No: 107-149 in Section 9.0      |

### 3.1.4 Safe Working Load

The safe working load for the skid base is as follows:

Padeyes for skid base (four (4) per skid) S.W.L. = 5.5kN (0.560T) per padeye.

### 3.1.5 Inspection of as Delivered Condition

On delivery, the packages must be visually inspected for any signs of damage. Any damaged areas shall be highlighted to Thule Rigtech and a further check carried out during unpacking for any damage to the equipment. Any further damage must be reported to Thule Rigtech immediately.

After unpacking, examine the contents carefully and verify that the shipment is complete according to the packing list/delivery note. Any discrepancies must be reported to Thule Rigtech immediately.



## LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

### 3.1 <u>UNPACKING. LIFTING and HANDLING INSTRUCTIONS</u> (Continued)

### 3.1.6 Check List for Inspection of as Delivered Condition

|      |                                                                                                           | (PLEASE TICK                | FOR APPROVAL)                |
|------|-----------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|
|      |                                                                                                           | Documents<br>in order       | Documents<br>not in order    |
| i)   | Packing list/delivery note approved and complete                                                          |                             |                              |
|      |                                                                                                           | No Damage<br>Witnessed      | Damage<br>Witnessed          |
| ii)  | Check that there is no internal damage to packages<br>and if any, check inside for any damage to equipmen | ıt                          |                              |
|      |                                                                                                           | Equipment<br>complete to PO | Equipment not complete to PO |
| iii) | Contents are in good condition and all components are supplied in accordance with Packing List            |                             |                              |

### 3.1.7 **<u>Removal of Preservation</u>**

Any preservation compounds, if used, shall be removed using soft brushes and copious amounts of fresh water.

Flanged connections (if applicable) which have been blanked can be removed using a suitable spanner.

### 3.1.8 Checklist for Removal of Preservation

|     |                                                                                           | (PLEASE TICK FOR APPROVAL) |                  |  |
|-----|-------------------------------------------------------------------------------------------|----------------------------|------------------|--|
|     |                                                                                           | Completed                  | N/A              |  |
| i)  | Remove preservation compounds with fresh water                                            |                            |                  |  |
|     |                                                                                           | Complete<br>No Damage      | Flange<br>Damage |  |
| ii) | Remove plastic caps and connectors from all flanges and pipe ends prior to piping hook-up |                            |                  |  |



## LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

## 3.2 **INSTALLATION**

### 3.2.1 Introduction

The shale shaker package is designed on a modular basis and will be transported to site in packages to suit.

The palletised packages can be easily manoeuvred into position by forklift or other suitable mechanical handling device.

### 3.2.2 Siting of Equipment

The VSM 100 is supplied with an integral skid base and can be positioned directly onto the deck or above the sand traps as required.

# Note: Structural checks must be carried out on the deck beams to ensure capability of supporting the applied loads from the shale shaker assembly.

# To ensure the package is installed correctly the tolerances on deck levels should be + 25mm.

Link sections can be installed between single shaker units to allow underflow between the header tanks and skid base. Multiple shaker configurations can be thus achieved.

### 3.2.3 Location

The final location of the equipment will depend on a number of factors and since each installation will differ, each case should be carefully considered. Prior to installing equipment a full installation survey should be carried out by a Thule Rigtech service engineer.

As a guide the following areas should be addressed when considering equipment location.

### • <u>Relationship to Flowline</u>

The shaker distribution chute must be located below the bell nipple to ensure sufficient fall from and to thus avoid back up and/or spillage from the flowline.



# LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

### 3.2.3 **INSTALLATION - Location** (Continued)

### • <u>Flowline Pipework</u>

Flowline pipework should not include sharp bends or traps for the accumulation of solids. Open ditches/troughs should be used where possible.

Where possible a flowline direct dump capability should be provided.

### • Flowline Connections

The flowline can enter the header box either from the rear or vertically from the top. On triple, quadruple, quintuple (or larger) configurations, a splitter box is supplied as standard to ensure that the optimum flow distribution is achieved.

Valves are fitted in specific link sections of multiple units for dumping/bypassing and cleaning purposes.

### • <u>Underflow Discharge</u>

Shaker skid bases are provided with discharge gates on either side and should be connected to channel the underflow discharge to an appropriate location.

### 3.3 **UTILITY REQUIREMENTS**

The utility requirements for each shaker is as follows:

### 3.3.1 Electrical Power

Each shale shaker is fitted with two (2) x 1.65kW, 3 phase electric motors.

The following table lists the full load current values for different voltage/frequency combinations applicable to the VSM 100:

|          | Freque      | ency:       |
|----------|-------------|-------------|
| Voltage: | <u>60Hz</u> | <u>50Hz</u> |
| 380      | N/A         | 4.3A        |
| 400      | 4.0A        | 4.1A        |
| 415      | N/A         | 3.9A        |
| 440      | 3.8A        | 3.8A        |
| 460      | 3.6A        | 3.7A        |
| 480      | 3.4A        | N/A         |



## LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

## 3.3 <u>UTILITY REQUIREMENTS</u> (Continued)

### 3.3.2 Air Supply

An air supply is required to inflate the pneumoseal clamping system.

| Pressure range | : | 85 - 90 psi                             |
|----------------|---|-----------------------------------------|
| Flowrate       | : | 0.5 ft <sup>3</sup> /min (intermittent) |

### 3.3.3 Water Supply

### i) <u>Spray Bar Assembly</u>

A continuous drill water supply of 23 litres/hour is required per shaker for the spray bar when water based mud is being used

### ii) <u>Washdown</u>

A high pressure wash gun is required for cleaning and washing down the shakers and screens. The cleaning medium must be suitable for the drilling fluid used.

## 3.4 **<u>RETROFIT INSTALLATIONS</u>**

The modular designed VSM 100 basket can be fitted directly onto VSM 120 and Brandt skids. Simple conversion kits are fitted to the existing skids and the VSM 100 baskets installed as direct replacements. The retrofit option should only be considered following an installation survey by Thule Rigtech.

| <u>Retrofit Kits:</u> | Components F                   | Required for Single Unit:                                                            |
|-----------------------|--------------------------------|--------------------------------------------------------------------------------------|
| VSM 120               | Two (2)<br>One (1)             | Mounting spring adapter brackets<br>Distribution chute                               |
| Brandt                | Four (4)<br>One (1)<br>Two (2) | Mounting spring adapter brackets<br>Distribution chute<br>Front flow diverter plates |



## LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

## 3 5 MECHANICAL INSTALLATION

The overall installation of the shaker will depend upon a number of factors including:

- Number of shakers to be installed
- Retrofitting to existing skid bases
- Supply of header tanks

The following steps should be used as a guideline for the installation of a complete shaker package which includes skid bases, link sections and header tanks. In certain locations the full workscope detailed below may not be required. However, this workscope would apply to the most common offshore scenario.

The installation to be carried out as follows:

- i) Remove the distribution chute from the header tank.
- ii) Release the transportation brackets (four (4) per Shaker) and lift the basket/head assembly off the skid base.
- iii) Lift the header tank from the skid base.
- iv) Unbolt the drive head assembly and lift it clear of the basket.
- v) Position the skid base(s) and link section(s) as required. These are installed in sequence of skid-link section-skid-link section, etc.
- vi) Assemble the header tank sections to the skid bases.
- vii) Align the skid/header tank assembly and carry out a dimensional check.
- viii) Fully weld the skid bases to the deck at the padeye locations with an 6mm fillet weld
- ix) Fully seal weld the link sections to the skid bases and header tanks.
- x) Seal weld joints between the header tank sections.
- xi) Lower the basket assemblies on to skid bases install the mounting springs and rubber pads.



## LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

### 3.5 <u>MECHANICAL INSTALLATION</u> (Continued)

- xii) Install the drive heads onto the basket assemblies and torque the securing bolts to the specified settings (Refer to Section 2.5).
- xiii) Re-install the distribution chutes.
- xiv) Carry out the electrical hook-up of the motors. (See Section 3.6 for complete electrical hook-up).
- xv) Position the pneumatic clamping panels as required.
- xvi) Install a suitable air line from the control panels to shaker pneumatic clamping systems. The air line should be terminated using flexible polythene hose.
- xvii) Install the spray bar assemblies onto the support posts (or support legs of fume extraction enclosures) and hook-up the drill water supply.
- xviii) Paint damaged areas/weld areas with existing paint system.



### LINEAR MOTION SHALE SHAKER

**OPERATING MANUAL** 

### 3.6 ELECTRICAL INSTALLATION

For wiring details please refer to the Electrical Schematic Drawing - 107-110 in Section 9 of this Manual.

Cable Specification can be found in Section 2.4

### i) Starter Enclosure

The unit is certified Zone 1 and has an ingress rating of IP65.

If the starter enclosure is sited within the shaker room, ensure that it is positioned away from areas subject to mud or water ingress.

The enclosure should be easily accessible and located at between 0.6m and 1.0m above the servicing level - a maximum height of 1.7m is preferred.

Warning: Hot spots on components can occur within the starter enclosure. A stainless steel notice on the outside of the enclosure warns against this hazard. The enclosure should not be opened whenever explosive gases are present and should be left for at least 30 minutes after the power has been isolated for the components to cool down.

### ii) Safety Isolator

The unit is certified Zone 1 and has an ingress rating of IP65.

It should be sited alongside the starter enclosure in an area free from mud or water ingress. The recommended height of the operating handle is 1.7m above the servicing level.

Warning: The safety isolator must be locked OFF whilst any maintenance is being carried out on any part of the electrical system.

### iii) Remote Start/Stop Station

The unit is certified Zone 1 and has an ingress rating of IP65.

The remote Start/Stop Station must be sited within the shaker area such that the operator can ensure that no exposed persons are in the danger zone around the machine.

It should be readily accessible for service and maintenance and mounted in such a manner as to minimise the possibility of damage from other handling or mobile equipment.



## LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

## 3.6 <u>ELECTRICAL INSTALLATION</u> (Continued)

### iii) **Remote Start/Stop Station** (Continued)

Care should be taken to ensure that it is not placed in a hazardous situation when being operated and that the possibility of inadvertent operation is minimised.

The unit should be mounted not less than 0.6m above the servicing level - a height of 1.7m is recommended.

### iv) Emergency Stop Start Station

The unit is certified Zone 1 and has an ingress rating of IP65.

The unit must be positioned for easy access and for non-hazardous operation by the operator or others who may need to use it. Measures against inadvertent operation should not impair accessibility.

### iv) Emergency Stop Start Station

The unit should be mounted not less than 0 6m above the servicing level and within easy reach of the normal working position of the operator. The ideal position is central on the shaker, above and slightly forward of the drive head, supported from above the shaker.

The emergency stop should NOT be used as a functional stop for the machine but should be tested on a regular basis to ensure reliable switching. Weekly testing is recommended.

### v) Bonding Arrangement

For details of earth bonding for the equipment refer to Drawing 107-133 in Section 9.



VSM 100 LINEAR MOTION SHALE SHAKER OPERATING MANUAL

# SECTION 4.0 -

# COMMISSIONING

# **INDEX**

- 4.1 Pre-Commissioning Procedures
- 4.2 Commissioning Procedures
- 4.3 Screen Fitting Procedure

(Commissioning Engineer)



VSM 100

## LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

### SECTION 4.0 - COMMISSIONING PROCEDURES

Commissioning requirements are minimal and consist of the following steps:

Note: A Checklist to be completed for each Shale Shaker

### 4.1 PRE-COMMISSIONING PROCEDURES

| -     | Shale Shaker - Serial No:                                                                                                    | <b>R.H. Motor - Serial No:</b>                                                                                                 |           |
|-------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------|
|       |                                                                                                                              | L.H. Motor - Serial No:                                                                                                        |           |
|       |                                                                                                                              | (Please Tick on Co                                                                                                             | mpletion) |
| i)    | Isolate rig power supply - One (1).                                                                                          |                                                                                                                                |           |
| ii)   | Remove the two (2) vibratory head en                                                                                         | d covers.                                                                                                                      |           |
| iii)  | Check tension of triple V belt drive ar<br>fitted it should be possible to deflect t<br>15 Newtons force. Tension is adjuste | rangements. Depending on size of pulley<br>he belts at mid-span between 3-4mm with<br>d by moving the belt tensioner assembly. |           |
| iv)   | Check pulleys and taperlocks are secu                                                                                        | rely tightened to 20Nm.                                                                                                        |           |
| v)    | Supply two (2) shots of grease (Shell drive shaft bearings. Two (2) grease head for this purpose.                            | Retinax LX2) to each of the four (4) main nipples are located at each side of the                                              |           |
| vi)   | Check motor starter overload setting i<br>lever on overload is set to the 'A' or a                                           | s correct and ensure auto/hand reset<br>uto setting.                                                                           |           |
| vii)  | Check motor and control circuit(s) ins                                                                                       | ulation resistance.                                                                                                            |           |
| viii) | Record resistance on attached Insulati                                                                                       | on Resistance Record Sheets                                                                                                    |           |
| ix)   | Reconnect rig power supplies and che<br>main drive shafts. Motors should be v<br>in counter rotation of the main shafts.     | ck the direction of electric motors and<br>wired for clockwise rotation resulting<br>(Refer to Drawing No:107-130 - Sect. 9.0) |           |
| viii) | Replace end covers.                                                                                                          |                                                                                                                                |           |
| ix)   | Connect rig air supply to pneumoseal<br>Monitor for a period of 30 minutes to                                                | clamping systems and inflate to 80 - 90 psi<br>ensure pneumoseal remains inflated.                                             |           |
|       | *** The unit is nov                                                                                                          | v ready for general use ***                                                                                                    |           |



## LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

## 4.2 COMMISSIONING PROCEDURES

- 4.2.1 After machines are operating, the following checks can be carried out:
  - i) Check visually and by ear for any spurious noises i.e. loose bolts, etc., coming from the basket and vibratory head.
  - ii) Inspect rubber pneumoseal clamping hose assemblies for leaks and any areas of quick wear
  - iii) Check pressure setting on air regulator valve. This should be set at an operational value of 80 psi.
  - iv) The rotational speed of the shafts can be checked by use of a tachometer through the hole allocated in the end covers. The nose of the meter rod can be pressed onto the shaft end. The reading should be 1720 RPM.
  - v) The current drawn by the motors can be checked utilising an ammeter. The readings will depend on supply voltage. Refer to Section 3.3.1 for Current Readings.
  - vi) The operating temperature of the main shaft bearings can also be monitored using an LED display thermometer. The normal operating temperature should lie between 65°C to 80°C but after at least twelve (12) hours continuous running, this will reduce. (Bearing can safely operate up to a temperature of 100°C)
  - vii) Check that after twelve (12) hours of continuous running, all main bearings are lubricated using two (2) shots of Shell or Retinax LX2 grease to the four (4) nipples, two (2) on each side of the vibratory unit on each VSM 100 machine.



### LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

## 4.2 **<u>COMMISSIONING PROCEDURES</u>** (Continued)

### Note: A Checklist to be completed for each Shale Shaker

# 4.2.2 CHECK LIST

|     | Shale Shaker - Serial No:                                                                           | K.H. Motor              | <b>λ.H. Motor - Serial No:</b> |           |  |
|-----|-----------------------------------------------------------------------------------------------------|-------------------------|--------------------------------|-----------|--|
|     |                                                                                                     | L.H. Motor - Serial No: |                                |           |  |
|     |                                                                                                     |                         | (Please Tick)                  |           |  |
| i)  | Visual and noise check<br>If fail - try to locate loose bolts and tighte                            | ghten                   | Pass                           | Fail      |  |
| ii) | Inspection of clamping system<br>If fail - change claming system                                    |                         | Pass                           | Fail      |  |
| ii) | Inspection of air regulator                                                                         |                         | O.K.                           | Re-adjust |  |
| v)  | Tachometer shaft speed check<br>If a problem arises please contact Thule                            | e Rigtech               | 0.K.                           | Problem   |  |
| v)  | Current drawn by motors<br>If a problem arises please contact Thule                                 | e Rigtech               | 0.K.                           | Problem   |  |
| vi) | Assessment of bearing operating tempe<br>over twelve (12) hours running<br>(See Test Running Sheet) | erature                 | Pass                           | Fail      |  |
| ii) | Re-check grease application times<br>Every twelve (12) hours of continuous                          | running                 | Done                           | Not Done  |  |


## LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

## 4.2 <u>COMMISSIONING PROCEDURES</u> (Continued)

#### 4.2.3 **TEST RUNNING**

## Note: A Checklist to be completed for each Shale Shaker

| Shale Shaker - S                   | Serial No:                                      | <b>R.H. Motor - Serial No:</b> |         |              |
|------------------------------------|-------------------------------------------------|--------------------------------|---------|--------------|
|                                    |                                                 | L.H. Motor - Serial No:        |         |              |
|                                    |                                                 |                                | (Pl     | lease Tick)  |
|                                    |                                                 |                                | 0.K.    | Fail/Problen |
| Connect motors<br>main shafts of S | s for clockwise rotati<br>Shaker rotate in oppo | ion so that osite directions   |         |              |
| Recharge greas                     | e system before swit                            | tching on                      |         |              |
| Fit wedge fram                     | es, pneumoclamping                              | g systems and scre             | eens    |              |
| Check air press                    | ure is 85 - 90 psi                              |                                |         |              |
| Check air hose                     | for any visible defec                           | ets                            |         |              |
| Run unit for tw<br>housing temper  | elve (12) hours and a atures                    | record bearing                 |         |              |
|                                    |                                                 | 4 Hours                        | 8 Hours | 12 Hour      |
| Small Drive                        | Pulley                                          | °C                             | °C      | °(           |
|                                    | Free End                                        | °C                             | °C      | •(           |
| I D'                               | Pulley                                          | °C                             | °C      | °(           |
| Large Drive                        |                                                 |                                |         |              |
| Large Drive                        | Free End                                        | °C                             | °C      | °(           |
| Large Drive<br>Motor               | Free End<br>Amps L/H                            | °C                             | °C      | °(           |



## LINEAR MOTION SHALE SHAKER

#### **OPERATING MANUAL**

#### 4.3 <u>COMMISSIONING - SCREEN FITTING PROCEDURE</u> (Continued)

#### 4.3.1 Top Deck - Hook Strip Screens

- i) Slacken off the ten (10) top frame tension rail bolts.
- ii) Check top frame extrusion rubbers are in place and clean. These rubbers are fitted to two (2) support rails running from the front to the back of the Shaker.
- iii) With the tension rails fully slackened, slide the hook strip screen onto the tension rails ensuring the back edge of the screen is seated properly on top of the back support rail.
- iv) Hand tighten tension bolts, pulling the screen down onto the rubber supports.
- v) Adjust tension bolts such that the screen is central to the side rails.
- vi) Tighten tension bolt nuts using a torque wrench to the correct torque. Tighten bolts in the sequence shown below. Lock tension nuts with threaded cover nuts.

|      |           | <u>Screen Size</u> | <u>To</u>     | rque      |
|------|-----------|--------------------|---------------|-----------|
| Back | of Unit   |                    | <u>lbf/ft</u> | <u>Nm</u> |
| (3)  | (4)       | 8 Mesh             | 35 - 38       | 47 - 52   |
| (7)  | (8)       | 10 Mesh            | 35 - 38       | 47 - 52   |
| (1)  | (2)       | 20 Mesh            | 32 - 35       | 43 - 47   |
| (9)  | (10)      | 30 Mesh            | 32 - 35       | 43 - 47   |
| (5)  | (6)       |                    |               |           |
| Fron | t of Unit |                    |               |           |

#### 4.3.2 Lower Deck Screens (Primary)

- i) Turn pneumoseal ball valve to vent position.
- ii) Withdraw one front screen 10° wedge piece approximately 18" from the front of the basket, leaving the wedge piece to rest on the side rails.



# LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

#### 4.3 <u>COMMISSIONING - SCREEN FITTING PROCEDURE</u> (Continued)

#### 4.3.2 Lower Deck Screens (Primary) (Continued)

- iii) With the screen 'U' channel facing the operator, slide the rear screen down the wedge piece. Move to the side of the shaker and lift the rear of the screen onto the rear screen rails.
- iv) With the screen 'U' channel facing the operator, slide the front screen down the wedge piece. Continue pushing until the rear of the front screen locates in the 'U' channel on the rear screen. Push both screens fully home.
- v) Slide the wedge piece forward until locating dowels on the underside of the wedge are located in the holes in the basket rails.
- vi) Repeat the same procedure with the second wedge piece.

#### 4.3.3 Secondary Screens (Drying Screens)

(To be fitted when drilling with oil based mud)

- i) Turn pneumoseal ball valve to 'VENT' position.
- ii) Withdraw wedge piece 20 30cm from the front of the basket, leaving the front primary screen in position.
- iii) Remove four (4) M10 set screws from the secondary screen carrier.
- iv) Place secondary screen into carrier frame with silicon strips facing the front.
- v) Replace and tighten the four (4) M10 set screws.
- vi) Slide wedge piece fully home, ensuring locating pins on underside of wedge are in position.
- vii) Repeat the procedure with the second wedge piece.



VSM 100 LINEAR MOTION SHALE SHAKER OPERATING MANUAL

# SECTION 5.0 -

# OPERATION

## **INDEX**

| 5.1 | General                  |
|-----|--------------------------|
| 5.2 | Screen Fitting Procedure |
| 5.3 | Unit Start-Up Procedure  |
| 5.4 | Unit Shut-Down Procedure |
| 5.5 | Troubleshooting          |
|     |                          |



#### LINEAR MOTION SHALE SHAKER

#### **OPERATING MANUAL**

#### SECTION 5.0 - OPERATION

#### 5.1 GENERAL

Operation of the unit is simple. Operating speed, stroke angle and screen angles are fixed and require no adjustment for varying operating conditions.

# *NOTE* : Under no circumstances should the unit speed or basket angle be tampered with as this could result in severe screen or mechanical problems.

#### 5.2 SCREEN FITTING PROCEDURE

#### 5.2.1 Top Deck - Hook Strip Screens

- i) Slacken off the ten (10) top frame tension rail bolts.
- ii) Check top frame extrusion rubbers are in place and clean. These rubbers are fitted to two (2) support rails running from the front to the back of the shaker.
- iii) With tension rails fully slackened slide the hook strip screen onto the tension rails, ensuring the back edge of the screen is seated properly onto the back support rail.
- iv) Hand tighten tension bolts, pulling the screen down onto the rubber supports.
- v) Adjust tension bolts such that screen is central to side rails.
- vi) Tighten tension bolt nuts using a torque wrench to correct torque. Tighten bolts in the sequence shown below. Lock tension nuts with threaded cover nuts.

|     |      | Screen Size: | <u>Torqu</u> | ie:   |
|-----|------|--------------|--------------|-------|
| Ba  | ick  |              | lbf/ft       | Nm    |
| (3) | (4)  | 8 mesh       | 35-38        | 47-52 |
| (7) | (8)  | 10 mesh      | 35-38        | 47-52 |
| (1) | (2)  | 20 mesh      | 32-35        | 43-47 |
| (9) | (10) | 30 mesh      | 32-35        | 43-47 |
| (5) | (6)  |              |              |       |
| _   |      |              |              |       |

Front



## LINEAR MOTION SHALE SHAKER

#### **OPERATING MANUAL**

#### 5.2 <u>SCREEN FITTING PROCEDURE</u> (Continued)

#### 5.2.2 Lower Deck Screens (Primary)

- i) Turn pneumoseal ball valve to vent position.
- ii) Withdraw one front screen 10° wedge piece approximately 18" from the front of the basket, leaving the wedge piece to rest on the side support rails.
- iii) With the screen 'U' channel facing the operator, slide the rear screen down the wedge piece. Move to the side of the shaker and lift the rear of the screen onto the rear screen rails.
- iv) With the screen 'U' channel facing the operator, slide the front screen down the wedge piece. Continue pushing until the rear of the front screen locates in the 'U' channel on the rear screen. Push both screens fully home.
- v) Slide wedge piece forward until locating dowels on underside of wedge are located in the holes in the basket rails.
- vi) Repeat same procedure with second wedge piece.
- vii) Re-inflate pneumoseal.

#### 5.2.3 <u>Secondary Screens</u> (Drying Screens)

- i) Turn pneumoseal ball valve to 'vent' position.
- ii) Withdraw wedge piece 20-30 cm from front of basket, leaving front primary screen in position.
- iii) Remove four (4) M10 set screws from secondary screen carrier.
- iv) Place secondary screen into carrier frame with silicon strips facing the front.
- v) Replace and tighten four (4) M10 set screws.
- vi) Slide wedge piece fully home, ensuring locating pins on underside of wedge are in position.



#### LINEAR MOTION SHALE SHAKER

# **OPERATING MANUAL**

## 5.2 **SCREEN FITTING PROCEDURE** (Continued)

- 5.2.3 <u>Secondary Screens</u> (Drying Screens) (Continued)
  - vii) Repeat procedure with second wedge piece.
  - viii) Re-inflate pneumoseal.
  - NOTE: On occasions where the facilities of the secondary screens are not required carrier frames may be removed from wedge pieces. These should be replaced with the Solids Deflector Plates See Drawing No: 100-100 Sht 2.

#### 5.3 UNIT START UP PROCEDURE

- i) Ensure rig air supply is available and pressure regulator is set at 80 90 PSI.
- ii) Turn ball valve to 'on' position, checking pneumoseals are fully inflated.
- iii) Switch remote push button/starter unit to 'on' position.
- iv) Open sluice gate on header box/feed chute.
- v) Adjust flow until the level of fluid is approximately 6"- 8" on W.B.M, 10"-15" on O.B.M from the discharge end of the front screen. The fluid level can be adjusted by controlling the volume of fluid entering the feed chute or by careful selection of mesh size.

# *NOTE*: Do not attempt to operate the unit with a higher level of fluid than has been recommended. To do so could result in screen overload and premature screen failure.

#### vi) <u>Secondary Screens</u>

Where secondary screens are in use solids from the primary screens will fall onto the lower secondary screens for further drying. This facility is particularly useful in areas where Oil Based Muds are used.

Secondary screens are available in two (2) mesh sizes and are generally of a coarser mesh than the upper deck primary screens.

Refer to Section 7.0 - Screen Information



## LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

## 5.4 UNIT SHUT DOWN PROCEDURE

- i) Close sluice gate on header box/feed chute.
- ii) Continue to run unit until mud already on screens has been processed.
- iii) Thoroughly clean down basket/head assembly and screens using appropriate medium. For water based muds use steam or high pressure water. For oil based muds use base oil gun.
- iv) Switch remote push button/starter unit to 'off' position.
- v) Turn ball valve to vent position.

#### NOTE:

- i) <u>**DO NOT**</u> turn air supply to vent prior to switching off machine. This can cause structural damage to the basket assembly and excessive wear to the clamping systems.
- ii) When the unit is out of use for long periods, all screens should be removed, cleaned thoroughly, dried and either re-boxed or stored in a safe, dry area.



#### LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

#### 5.5 **TROUBLESHOOTING**

|       | Symptom:                         | Probable Cause:                                                                        | Remedial Action:                                                                                                                                          |
|-------|----------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.5.1 | Electrical:                      |                                                                                        |                                                                                                                                                           |
| i)    | Both motors fail to rotate       | Main supply down                                                                       | Check isolator<br>Check supply<br>Check fuses                                                                                                             |
| ii)   | One motor fails to rotate        | Thermal overload setting                                                               | Reset overload to correct setting                                                                                                                         |
| iii)  | One motor fails after start-up   | Fuses blown<br>Electric motor faulty                                                   | Check fuses<br>Change electric motor                                                                                                                      |
| 5.5.2 | Mechanical:                      |                                                                                        |                                                                                                                                                           |
| i)    | Both drive shafts fail to rotate | Bearing failure<br>Broken belts<br>Slack belts                                         | Replace bearings<br>Replace belts<br>Re-tension belts<br><b>See Sections: 6.3.1/6.3.4</b>                                                                 |
| ii)   | One drive shaft fails to rotate  | Bearing failure<br>Broken belts<br>Slack belts<br>Damage to outrigger<br>assembly      | Replace bearings<br>Replace belts<br>Re-tension belts<br><b>See Sections: 6.3.1/6.3.4</b><br>Check assy. Replace if necessary<br><b>See Section 6.3.2</b> |
| iii)  | Bearing failure                  | Wrong grease<br>Grease system/seal failure<br>Vent hole in head blocked                | Use recommended grease<br>See Section 6.3.4<br>Check grease passage<br>Ensure hole in head is clear                                                       |
| iv)   | Belt failure                     | Wrong tension<br>Belt wear<br>Incorrect speed                                          | Check belt tension<br>See Section 6.3.1<br>Check pulley alignment<br>Check pulley size                                                                    |
| v)    | Pneumatic clamping failure       | Incorrect pressure<br>Incorrectly fitted screens<br>Incorrectly fitted wedge<br>frames | Check air supply and pressure<br>pressure is correct (80-90 psi)<br>Check screens are properly located<br>Check wedge frames are properly<br>located      |
| vi)   | Solid transportation<br>limited  | Shaft rotation<br>Belt damaged<br>Damaged screen<br>Angle of basket                    | Check shaft rotation<br>Check tension<br>Replace screen<br>Operate unit in horizontal position<br>only.                                                   |



LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

#### 5.5 **TROUBLESHOOTING** (Continued)

| Symptom: |                                          | Probable Cause:                                                                                                                                                                                                                                                                                                                 | <b>Remedial Action:</b>                                                                                                                                                                                                    |
|----------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.5.2    | Mechanical:                              |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                            |
|          | (Cont'd)                                 |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                            |
| vi)      | Solid transportation<br>limited (Cont'd) | Hook strip screen tension<br>Spray bars off (WBM)                                                                                                                                                                                                                                                                               | Check tension of hook strip<br>bolts (35 - 40 ft. lb)<br>Use spray bars                                                                                                                                                    |
| vii)     | Short screen life                        | Too fine screen<br>Premature damage<br>Angle of basket<br>Inadequate washdown facilities<br>Incorrect fluid level<br>Spray bars off (WBM)                                                                                                                                                                                       | Change to coarser mesh<br>Check storage and handling<br>Check basket is operated in<br>horizontal position<br>High pressure clean with<br>appropriate fluid.<br>Adjust to 10 - 15" beach OBM<br>Adjust to 6 - 8" beach WBM |
| viii)    | Excessive noise                          | Loose bolts<br>Pneumatic clamping system<br>Screen wedge frames<br>Incorrect tension of hook strip<br>Bearing failure<br>Noisy seals                                                                                                                                                                                            | Check torques on all bolted assys.<br>Check pressure<br>Locate properly<br>Check torque (35 - 40 ft. lb) on<br>scalping screens<br>Replace bearings<br>Grease seals                                                        |
| ix)      | Unusual vibrations                       | Weakened mounting spring<br>Incorrect shaft rotation                                                                                                                                                                                                                                                                            | Change mounting spring<br>Check belt tension                                                                                                                                                                               |
| 5.5.3    | Additional Recommen                      | dations for Water Based Drilling                                                                                                                                                                                                                                                                                                | Fluids                                                                                                                                                                                                                     |
|          | Symptom:                                 | Remed                                                                                                                                                                                                                                                                                                                           | ial Action:                                                                                                                                                                                                                |
| i)       | Lack of bottom screen transportation     | Fit finer primary screens and ensure beach length is 6 - 8"<br>Rotate screens allowing one set to be used as a back-up.<br>Clean back-up screens from rear with high pressure wash gun.<br>Ensure adequate washdown facilities are available<br>i.e. High pressure wash gun<br>Install spray bar system (Contact Thule Rigtech) |                                                                                                                                                                                                                            |
| ii)      | Lack of top screen transportation        | Remove front gate in distribution chute and allow fluid to wash<br>over onto screen<br>Check screen tension (Recommended 35 - 40 ft. lb)                                                                                                                                                                                        |                                                                                                                                                                                                                            |



VSM 100 LINEAR MOTION SHALE SHAKER OPERATING MANUAL

# SECTION 6.0 -

## MAINTENANCE

## **INDEX**

| 6.1 | Useful Maintenance Procedures |
|-----|-------------------------------|
| 6.2 | Routine Maintenance           |
| 6.3 | Part Replacement Procedures   |



# LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

#### **SECTION 6.0 - MAINTENANCE**

#### 6.1 USEFUL MAINTENANCE PROCEDURES

Before detailing the recommended maintenance procedures, the following general hints on machine maintenance and safety are given and should prove useful to the maintenance engineer.

- Ensure that power supplies are isolated before commencing work on the unit.
- Clean down all parts and the work area prior to commencement of work.
- Block up heavy parts before commencing work beneath the unit or parts.
- Where heavy lifting is involved always seek assistance.
- Remove the primary screens before commencing work on the shaker.
- Before restarting the VSM 100 after maintenance, ensure that all tools, old parts, nuts, bolts, washers etc. are removed.
- <u>DO NOT</u> over lubricate the main bearings.
- The bearings are designed to run warm and can be used safely up to an operating temperature of 100°C. Normal operating temperature around 65°- 80°C.
- <u>DO NOT</u> weld on any part of the basket or head assembly.
- All maintenance to be carried out by suitably qualified personnel.



# LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

### 6.2 **<u>ROUTINE MAINTENANCE</u>**

Although the VSM 100 has been designed to minimise downtime by reducing routine maintenance, to prolong the life of the various machine parts and to maintain the smooth running of the machine, the maintenance instructions given in this section <u>must</u> be strictly adhered to, and be performed at the prescribed intervals.

#### 6.2.1 Daily

- i) Visually examine the unit for signs of wear and or damage, and repair/replace as necessary.
- ii) Remove any build up of solids from electric motors.
- iii) Run the machine and perform audible check, investigating as necessary.
- Apply two (2) shots of the approved grease (Shell Retinax LX2) to each main shaft bearing every twelve (12) hours of operation. There are four (4) grease nipples two (2) on each side of the vibratory unit.

**NOTE:** To attain good bearing life it is essential the specified grease is used.

v) Check air regulator is set at correct pressure (85-90 psi) and adjust if necessary.

#### 6.2.2 Monthly

With the machine switched off and the power isolated the following procedures should be carried out:

- i) Remove the drive guards.
- ii) Check for belt wear. Belt wear can be caused by pulley mis-alignment or incorrect tensioning.
- iii) Check tension of triple 'V' belt drive arrangements. It should be possible to move and deflect the belts at mid span between 3-4 mm/1.5kg. Adjustment is made by moving belt tensioner. Refer to Section 6.3.1.
- iv) Check the tensioner pulleys and bearings for wear. Repair/replace if necessary.
- Inspect the grease nipple assemblies and associated piping. Repair/replace if necessary. Check the main bearing seals for excessive leakage. Replace as necessary.



## LINEAR MOTION SHALE SHAKER

#### **OPERATING MANUAL**

## 6.2 **<u>ROUTINE MAINTENANCE</u>** (Continued)

#### 6.2.2 <u>Monthly</u> (Continued)

- vi) Check the torque settings on the drive head securing bolts (8 x M20). Refer to Section 2.5 for Torque Setting.
- vii) Check the torque settings on the top frame securing bolts (22 x M12). Refer to Section 2.5 for Torque Setting.
- viii) Check the condition of the top frame rubber extrusion. Replace as necessary.
- ix) Inspect the pneumoseal clamping systems and associated fittings for leaks and wear. Replace as necessary.
- x) Visually examine electric drive motors for wear and/or damage. Remove any build up of dried solids.
- xi) Check condition and pressure setting on air regulator (85-90psi). Adjust/repair as necessary.

#### 6.3 **PART REPLACEMENT PROCEDURES**

# <u>WARNING:</u> Before commencing any part replacement procedures the unit must be isolated from all electric power

6.3.1 Drive Belts

Drawing No: 100-101

#### **Tools Required**

13mm Spanner/Socket 17mm Spanner/Socket 19mm Spanner/Socket 8mm Allen Key Small Bearing Pullers (3-leg)



## LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

#### 6.3 **<u>PART REPLACEMENT PROCEDURES</u>** (Continued)

#### Removal

- i) Remove the drive guards ten (10) M8 set screws per guard.
- ii) Remove the cooling fan one (1) M10 socket cap bolt.
- iii) Slacken off the belt tensioner assembly nuts two (2) M12.
- iv) Unscrew the four (4) M10 set screws from outrigger bearing housing.
- v) Using bearing pullers remove the outrigger bearing housing, leaving the bearing on the motor shaft.
- vi) With the outrigger bearing housing removed, work the three belts off the pulleys manually lifting from groove to groove.

# **<u>NOTE:</u>** To ensure equal loading on the belts, replacements should always be fitted in sets of three.

#### Replacement

- i) Manually work the three (3) new belts over the pulleys.
- ii) Carefully refit the outrigger bearing housing onto the outrigger assembly, ensuring that the bearing seals remain in location.
- iii) Refit the four (4) M10 set screws and apply the specified torque. (Refer to Section 2.5).
- iv) Ensure that the belt tensioner pulley is located between the motor and main shaft pulleys and take up the slack on the belts.
- v) Check the belts/pulleys for mix-alignment.

#### Method of Belt Tensioning

- i) Lever the tensioner pulley down until the required tension is applied.
- ii) Secure the two (2) M12 nuts to the specified torque (Ref. section 2.5).
- iii) After the shaker has been running for a few hours, the tension should be checked and re-adjusted as required.



#### LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

## 6.3 **PART REPLACEMENT PROCEDURES**

#### 6.3.2 Outrigger Bearing Replacement

Drawing No. 100-103

#### **Tools Required**

13mm Spanner/Socket 17mm Spanner/Socket 19mm Spanner/Socket 8mm Allen Key Small Bearing Pullers (3-leg) External Circlip Pliers

#### <u>Removal</u>

- i) Remove the drive belts as set out in Section 6.3.1.
- ii) Remove the outer external circlip from the motor shaft.
- iii) Using bearing pullers remove the outrigger bearing from the motor shaft.
- iv) Discard the bearing.

#### **Replacement**

- i) Check that the new bearing runs freely and that the seals are in place.
- ii) For the procedure for fitting outrigger bearings refer to Drawing No: 107-108 Sections IV & V.
- iii) Refit the belts and re-tension as set out in Section 6.3.1.



#### LINEAR MOTION SHALE SHAKER

#### **OPERATING MANUAL**

## 6.3 **<u>PART REPLACEMENT PROCEDURES</u>** (Continued)

#### 6.3.3 Electric Motor

Drawing No. 100-103

#### **Tools Required**

13mm Spanner/Socket 17mm Spanner/Socket 19mm Spanner/Socket Small Bearing Pullers (3-leg) 8mm Allen Key 5mm Allen Key External Circlip Pliers

#### Removal

- i) Remove the drive belts and outrigger bearing as set out in Sections 6.3.1 & 6.3.2.
- ii) Unscrew the two (2) grub screws from the taperlock bush in the motor pulley.
- iii) Screw one grub set screw into the jacking hole in the taperlock to spring the mating tapers. The pulley can now be freely removed from shaft.
- iv) Unscrew the four (4) M10 socket head electric motor securing set screws. Support the electric motor while withdrawing the spigot from the sideplate.

#### NOTE: The motor weighs 52kg

#### **Replacement**

- i) Before replacing the electric motor, check that the mounting flange plate and spigot are clean and free from dirt.
- ii) Lift the motor into position against the sideplate ensuring that the terminal box is positioned at the top and that the spigot is aligned correctly.
- iii) Refit the four (4) M10 socket head set screws and secure to the specified torque. (Refer to Section 2.5)
- Unscrew the eight (8) M10 set screws from the main bearing housing end cap. Using two (2) of the set screws, jack the end cap from the main bearing housing and carefully slide it from the shaft.
- vi) The shaft has a circlip on one end only. If present, remove it carefully from the bearing journal using a circlip pliers.
- vii) Insert the two (2) M10 jacking screws into the two (2) jacking holes in the main bearing housing. Jack the housing out of the head sideplate, taking care that housing comes out evenly.



#### LINEAR MOTION SHALE SHAKER

#### **OPERATING MANUAL**

## 6.3 **<u>PART REPLACEMENT PROCEDURES</u>** (Continued)

#### 6.3.4 Main Shaft Bearings

Drawing No: 100-103

#### **Tools Required**

13mm Spanner/Socket 17mm Spanner/Socket 19mm Spanner/Socket Soft Mallet Bearing Press 8mm Allen Key 5mm Allen Key External Circlip Pliers

#### Removal

- i) Remove drive guards and drive belts as detailed in Section 6.3.1.
- ii) Unscrew the two (2) grub screws from the taperlock bush in the main shaft bearing.
- iii) Screw one (1) grub set screw into the jacking hole in the taperlock to spring the mating tapers. The pulley can now be freely removed form shaft.
- iv) Remove the grease nipple banjo coupling from the main bearing housing end cap and set it aside for refitting.
- v) Unscrew the eight (8) M10 set screws from the main bearing housing end cap. Using two (2) of the set screws, jack the end cap from the main bearing housing and carefully slide it from the shaft.
- vi) The shaft has a circlip on one end only. If present, remove it carefully from the bearing journal, using circlip pliers.
- vii) Insert two (2) M10 jacking screws into the two (2) jacking holes in the main bearing housing. Jack the housing out of the head sideplate, taking care that the housing comes out evenly.
- viii) Lower the shaft onto the bottom of the sideplate bore taking care not to damage the bearing journal or bore.
- ix) Remove the labyrinth seal from the main bearing housing.
- x) Using a bearing press, press the bearing out of the housing.
- xi) Discard the bearing and labyrinth ring.



## LINEAR MOTION SHALE SHAKER

#### **OPERATING MANUAL**

#### 6.3 <u>PART REPLACEMENT PROCEDURES</u> (Continued)

#### 6.3.4 Main Shaft Bearings - Replacement

- i) Check that the new main bearing runs freely.
- ii) Thoroughly clean the main bearing housing.
- iii) Using a bearing press, press the new main bearing into the housing ensuring that it is pressed fully home against the circlip
- iv) Pack the main bearing housing and bearing with 1 50g of the specified grease (Shell Retinax LX2). Press a new labyrinth ring into the housing (inside).
- v) Slide the bearing housing over the end of the shaft, lining up the holes in the bearing housing with the holes in the sideplate. Check that the grease nipple slot is in the correct location.
- vi) Use the four (4) M10 set screws to draw the bearing housing into the sideplate taking that it is drawn in evenly and fully locates against the sideplate. (Check with a feeler gauge.)
- vii) Remove and replace the main bearing seal.
- viii) Remove the four (4) M10 set screws from the bearing housing.
- ix) Refit the main shaft external circlip if previously fitted.
- x) Slide the main bearing housing end cap over the end of the shaft. Align holes with those in the bearing housing. Ensure the hole for the grease nipple banjo coupling is in the correct position.
- xi) Insert eight (8) M10 set screws and apply the specified torque. (Refer to section 2.5). Note: New set screws are required.
- xii) Refit the grease nipple banjo coupling and secure it in place.
- xiii) Refit the main shaft pulley and taperlock bush onto the shaft and tighten the two (2) grub screws in the taperlock bush. Ensure that the pulley is correctly aligned.
- xiv) Replace drive belts as detailed in Section 6.3.1



#### LINEAR MOTION SHALE SHAKER

#### **OPERATING MANUAL**

## 6.3 **<u>PART REPLACEMENT PROCEDURES</u>** (Continued)

#### 6.3.5 Belt Tensioner Assembly Bearing

Drawing No: 100-103

#### **Tools Required**

13mm Spanner/Socket 19mm Spanner/Socket Soft Mallet Bearing Press Small Bearing Puller

#### **Removal**

- i) Remove the drive guards ten (10) M8 set screws per guard.
- ii) Loosen the two (2) M12 belt tensioner assembly nuts and remove the tensioner arm from its backing plate.
- iii) Remove the external circlip from the tensioner assembly shaft and discard it.
- Using a small bearing puller remove the pulley assembly from the shaft.
  (Care should be taken when removing the pulley assembly as the pulley is cast and susceptible to fracture under load.)
- v) Using a suitable drift, carefully tap the two (2) bearings from the roller.
- vi) Discard the bearings.

#### **Replacement**

- i) Check that the new tensioner bearing runs freely and that the seals are in place.
- ii) Using a bearing press, carefully press the new bearings into tensioner pulley.
- iii) Heat the tensioner pulley assembly in a suitable oven to around 45°C.
- iv) Using a soft mallet, tap the tensioner pulley assembly onto tensioner arm shaft.
- v) Install a new external circlip onto the tensioner arm shaft.
- vi) Refit tensioner arm to the backing plate and secure the two (2) M12 nuts applying the specified torque (Refer Section 2.5).
- vii) Refit the belts and drive guards as set out in Section 6.3.1.



#### LINEAR MOTION SHALE SHAKER

#### **OPERATING MANUAL**

## 6.3 **<u>PART REPLACEMENT PROCEDURES</u>** (Continued)

6.3.6 Pneumoseal Clamping System

Drawing No. 100-102

#### **Tools Required**

2 No. Adjustable Spanners

#### **Removal**

- i) Switch off the shaker.
- ii) Deflate the pneumoseal system by turning the 3-way valve to the vent position.
- iii) Disconnect the short stainless steel hose assembly from the pneumoseal.
- iv) Remove both primary screens and the wedge piece from shaker basket.
- v) Lift and pull each toggle sideways to remove it from its slot. Carefully withdraw the pneumoseal from the screen clamping rails.
- vi) Ensure that the toggle slots in the rails are clear of debris, solids, cement etc.

#### **Replacement**

- i) Spray toggles on the new pneumoseal with a light oil: i.e. WD40.
- ii) Slide the pneumoseal into the basket lining up the toggles with the slots in the clamping angles.
- iii) Starting at the back, lift each toggle and slide it into the slot in the clamping angle. Check that each toggle is properly located in its slot.
- iv) Reconnect the pneumoseal to the short stainless steel hose assembly.
- v) Re-install the primary screens and wedge piece.



VSM 100 LINEAR MOTION SHALE SHAKER OPERATING MANUAL

# SECTION 7.0 -

# SCREEN INFORMATION

## **INDEX**

| 7.1 | Screen Specifications   |
|-----|-------------------------|
| 7.2 | Screen Selection        |
| 7.3 | Screen Repair Procedure |
| 7.4 | Screen Storage          |



#### LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

#### SECTION 7.0 - SCREEN INFORMATION

## 7.1 SCREEN SPECIFICATIONS

#### 7.1.1 VSM 100 Hook Strip Screens

7.1.2

| Mesh Size                 | Aperture Micron       | Open Area % |
|---------------------------|-----------------------|-------------|
| 8 x 8                     | 2465                  | 60          |
| 10 x 10                   | 1976                  | 61          |
| $10 \times 10$<br>20 x 20 | 895                   | 49          |
| $30 \times 30$            | 567                   | 45          |
| 50 X 50                   | 507                   | 5           |
| Special Order Only        |                       |             |
| 40 x 40                   | 399                   | 39          |
| 60 x 60                   | 253                   | 36          |
| 80 x 80                   | 186                   | 34          |
| 100 x 100                 | 142                   | 31          |
|                           |                       |             |
| VSM 100 Pretension        | ned Screens - Primary |             |
| 52 x 52                   | 340                   | 48          |
| 84 x 84                   | 215                   | 49          |
| 105 x 105                 | 165                   | 45          |
| 120 x 120                 | 150                   | 49          |
| 145 x 145                 | 120                   | 46          |
| 165 x 165                 | 105                   | 45          |
| 180 x 180                 | 91                    | 42          |
| 200 x 200                 | 87                    | 47          |
| 230 x 230                 | 75                    | 46          |
|                           |                       |             |
| Special Order Only        |                       |             |
| 300 x 300                 | 49                    | 32          |
| $325 \times 325$          | 42                    | 29          |
| 525 A 525                 | -⊤ <i>⊔</i>           | 29          |



#### LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

## 7.1 <u>SCREEN SPECIFICATIONS</u> (Continued)

#### 7.1.3 VSM 100 Secondary Screens - Oil Recovery Mode

| Mesh Size | Aperture Micron | Open Area % |
|-----------|-----------------|-------------|
| 100H      | 557 x 184       | 40          |
| 84 x 84   | 215             | 49          |

#### Special Order Only

| 40 x 80   | 465 x 148 | 34 |
|-----------|-----------|----|
| 105 x 105 | 165       | 45 |
| 145 x 145 | 125       | 51 |
| 165 x 165 | 104       | 45 |



## LINEAR MOTION SHALE SHAKER

#### **OPERATING MANUAL**

#### 7.2 SCREEN SELECTION

#### 7.2.1 Hooked Stripped Screen - Upper Deck

The function of the upper deck screen is to remove the large and heavy cuttings only. For this purpose, hooked stripped screens are available, ranging in sizes from 8 - 30 mesh.

The screen should be selected such that the majority of fluid passes through the first third of the screen.

#### 7.2.2 Pretensioned Primary Screen - Lower Deck

Pretensioned primary screens range in size from 52 - 325 mesh. The mesh should be selected such that during normal operation a beach length of between 6" - 8" on WBM,

10" - 15" on OBM beach is maintained. By selecting a mesh which will allow the unit to operate with the correct beach length, a 50% overload capacity is reserved to compensate for changes in mud properties, rig motion and drilled solids.

#### 7.2.3 Secondary Screens (Drying Module)

Secondary screens are attachments designed to reduce the fluid content on solids discharged from the primary screens. These screens are normally used with oil based muds, but are equally suitable with water based muds if desired.

Additional fluid is recovered from the solids by the screens' unique design which allows the solids to rotate on the mesh before being discharged. This results in the final discharge from the shaker being some 2 - 5% lower in fluid.

Secondary screens are available in two standard sizes : 100H and 84 x 84

*NOTE*: To attain the maximum benefits from the VSM100 Shale Shaker operation of the unit with too fine a mesh or with excessive volumes of fluid should be avoided.



## LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

#### 7.3 SCREEN REPAIR PROCEDURE

Pretensioned primary screens are of a multi panel configuration and are designed to be repaired.

At failure, screens should be removed from the shaker and washed with the appropriate medium. Allowing the screen to dry, the damaged fine cloth should be carefully removed from the panel using a knife or sharp blade.

Using the repair kit with the special cartridge and dispenser, a small quantity of compound should be applied to the surface of the backing cloth. To ensure an even finish the small plastic spreader (supplied with kit) should be drawn lightly over the surface ensuring sufficient overlap on the surrounding bonding.

Allow screen to stand for 12 - 24 hours before re-use.

This method of repair can be repeated until the use of the screen becomes impractical - approximately 25% of the screen's area..

# *NOTE*: When repair work has been completed the mixing nozzle should be removed from the cartridge and thoroughly cleaned.

#### 7.4 SCREEN STORAGE

Screens are supplied in cardboard containers and should always be stored in these containers in a dry environment and out of direct sunlight. Horizontal or vertical stacking is permissible providing the containers are clear of possible protrusions which could puncture the container and damage the screen.

When transporting the screens from rig store to VSM 100 unit, the screens should be kept in their containers to minimise the risk of damage.

#### 7.5 SCREEN WASHING

Before the VSM 100 is stopped, the screens should be washed with the appropriate medium to avoid plugging or blinding of the meshes by dried mud.



VSM 100 LINEAR MOTION SHALE SHAKER OPERATING MANUAL

# SECTION 8.0 -

# PARTS LIST

# **INDEX**

| 8.1 | Basket Assembly and Screen Clamping Assembly |
|-----|----------------------------------------------|
| 8.2 | Vibratory Drive Unit                         |
| 8.3 | Clamping System                              |
| 8.4 | Tensioner, Shaft and Drive Assembly          |
| 8.5 | Electric Starter Box                         |

8.6 Basic Maintenance Equipment



LINEAR MOTION SHALE SHAKER

**OPERATING MANUAL** 

## SECTION 8.0 - PARTS LIST

## 8.1 BASKET ASSEMBLY Drawing No. 100-100 Sheet 1 of 2 Rev C SCREEN CLAMPING ASSEMBLY Drawing No. 100-100 Sheet 2 of 2 Rev D

| Item<br><u>N°:</u> | Part N°: Name of | of Part:                                                       | Material | N° Parts<br><u>per Unit:</u> |        |
|--------------------|------------------|----------------------------------------------------------------|----------|------------------------------|--------|
| 1                  | 100/100/01       | Basket Fabrication                                             |          | Steel BS 4360 43A            | 1      |
| 2                  | 100/100/02       | Top Frame Fabrication                                          |          | Steel BS 4360 43A            | 1      |
| 3                  | 100/100/03       | Nyloc Nut - M12                                                |          | 316 Stainless Steel          | 22     |
| 4                  | 100/100/04       | Hex Head Set Screw - M12 x 35mm lg                             |          | 316 Stainless Steel          | 22     |
| 6                  | 100/100/06       | Spring Washer - M12                                            |          | 316 Stainless Steel          | 22     |
| 7A                 | 100/100/07A      | Tension Rail - LHS                                             |          | Steel BS 4360 43A            | 1      |
| 7B                 | 100/100/07B      | Tension Rail - RHS                                             |          | Steel BS 4360 43A            | 1      |
| 8                  | 100/100/08       | Top Frame Rubber Extrusion                                     |          | Nitrile Rubber               | 2 x 2m |
| 9                  | 100/100/09       | Blind Nut - M16 x 40mm lg                                      |          | 316 Stainless Steel          | 10     |
| 10                 | 100/100/10       | Nut - M16 x 40mm lg                                            |          | 316 Stainless Steel          | 10     |
| 11                 | 100/100/11       | Washer - M16                                                   |          | 316 Stainless Steel          | 10     |
| 12                 | 100/100/12       | Tension Bolt - M16 x 100mm lg                                  |          | 316 Stainless Steel          | 10     |
| 13                 | 100/100/13       | Screen Wedge Frame Fabrication                                 |          | Steel BS 4360 43A            | 2      |
| 13A                | 100/100/13A      | Socket Head CSK Screw - M6 x 16mm<br>c/w Nyloc Nut             | ı lg     | 316 Stainless Steel          | 16     |
| 13B                | 100/100/13B      | Wedge Piece Wear Strip                                         |          | Steel BS 4360 43A            | 4      |
| 13C                | 100/100/13C      | Socket Head Cap Screw M5 x 40mm lg<br>c/w Washer and Nyloc Nut | 2        | 316 Stainless Steel          | 4      |
| 14                 | 100/100/14       | Secondary Screen Carrier Fabrication                           |          | Steel BS 4360 43A            | 2      |
| 14A                | 100/100/14A      | Mud Deflector Plate Fabrication                                |          | Steel BS 4360 43A            | 2      |
| 14B                | 100/100/14B      | Mud Deflector Rear Clamp Screw<br>M10 x 20 Cap Screw           |          | 316 Stainless Steel          | 4      |
| 15                 | 100/100/15       | Hex Head Set Screw - M10 x 20mm lg                             | 3        | 316 Stainless Steel          | 12     |
| 16                 | 100/100/16       | Square Washer - M10 x 22mm                                     |          | 316 Stainless Steel          | 8      |
| 17                 | 100/100/17       | Socket Head Cap Screw - M10 x 25mm                             | n lg     | 316 Stainless Steel          | 4      |
|                    |                  |                                                                |          |                              |        |



## LINEAR MOTION SHALE SHAKER

#### **OPERATING MANUAL**

| 8.1                | BASKET ASSI                                                     | EMBLY Drawing No. 100-10                                                    | 0 Sheet 1 of 2 Rev C            |       |  |
|--------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------|-------|--|
| (ctd)              | SCREEN CLAMPING ASSEMBLY Drawing No. 100-100 Sheet 2 of 2 Rev D |                                                                             |                                 |       |  |
| Item<br><u>N°:</u> | Part N°: Name                                                   | of Part:                                                                    | N° Parts<br>Material: per Unit: |       |  |
| 17A                | 100/100/17A                                                     | Hex Head Set Screw M10 x 25mm lg                                            | 316 Stainless Steel             | 4     |  |
| 18                 | 100/100/18                                                      | Disc Spring                                                                 | Spring Steel                    | 112   |  |
| 19A                | 100/100/19A                                                     | Spring Mounting Bracket - Front Right                                       | Steel BS 4360 43A               | 1     |  |
| 19B                | 100/100/19B                                                     | Spring Mounting Bracket - Front Left                                        | Steel BS 4360 43A               | 1     |  |
| 19C                | 100/100/19C                                                     | Spring Mounting Bracket - Back Right                                        | Steel BS 4360 43A               | 1     |  |
| 19D                | 100/100/19D                                                     | Spring Mounting Bracket - Back Left                                         | Steel BS 4360 43A               | 1     |  |
| 20                 | 100/100/20                                                      | 0/100/20 Machined Hex Head Set Screw 316 Stainless Steel<br>- M16 x 45mm lg |                                 | 8     |  |
| 21A                | 100/100/21A                                                     | Nyloc Nut - M16                                                             | 316 Stainless Steel             | 16    |  |
| 21B                | 100/100/21B                                                     | Spring Washer - M16                                                         | 316 Stainless Steel             | 16    |  |
| 22                 | 100/100/22                                                      | Hex Head Set Screw - M16 x 50mm lg                                          | 316 Stainless Steel             | 8     |  |
| 24                 | 100/100/24                                                      | Mounting Spring                                                             | Spring Steel                    | 4     |  |
| 24B                | 100/100/24B                                                     | Mounting Spring Pads                                                        | Nitrile Rubber                  | 8     |  |
| 25A                | 100/100/25A                                                     | LH Screen Wedge Retaining Rail                                              | Steel BS 4360 43A               | 1     |  |
| 25B                | 100/100/25B                                                     | RH Centre Screen Wedge Retaining Ra                                         | il Steel BS 4360 43A            | 1     |  |
| 25C                | 100/100/25C                                                     | LH Centre/RH Screen Wedge<br>Retaining Rail                                 | Steel BS 4360 43A               | 2     |  |
| 26                 | 100/100/26                                                      | CSK Head Set Screw - M8 x 18mm lg                                           | 316 Stainless Steel             | 24    |  |
| 27B                | 100/100/27B                                                     | Screen Support Rails Rear LH                                                | Steel BS 4360 43A               | 1Pair |  |
| 27C                | 100/100/27C                                                     | Screen Support Rails Rear RH                                                | Steel BS 4360 43A               | 1Pair |  |
| 27D                | 100/100/27D                                                     | Rear Screen Support Rail c/w Ext'n                                          | Steel BS 4360 43A               | 2     |  |
| 27E                | 100/100/27E                                                     | Rear Screen Bar Spacer Rail                                                 | Steel BS 4360 43A               | 2     |  |
| 28A                | 100/100/28A                                                     | Hex Head Set Screw - M8 x 35mm lg                                           | 316 Stainless Steel             | 6     |  |
| 28B                | 100/100/28B                                                     | Hex Head Set Screw - M8 x 30mm lg                                           | 316 Stainless Steel             | 8     |  |
| 28C                | 100/100/28C                                                     | Hex Head Set Screw - M8 x 20mm lg                                           | 316 Stainless Steel             | 16    |  |
| 28D                | 100/100/28D                                                     | Socket Head CSK Screw - M8 x 20mm                                           | lg 316 Stainless Steel          | 4     |  |
|                    |                                                                 |                                                                             |                                 |       |  |



LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

# 8.1BASKET ASSEMBLYDrawing No. 100-100Sheet 1 of 2Rev C(ctd)SCREEN CLAMPING ASSEMBLYDrawing No. 100-100Sheet 2 of 2Rev D

| Item<br><u>N°:</u> | Part N°: Name o | <u>f Part:</u>                         | Material:       | N° Parts<br>per Unit: |        |
|--------------------|-----------------|----------------------------------------|-----------------|-----------------------|--------|
| 29                 | 100/100/29      | Spring & Flat Washers - M8             | 316 \$          | Stainless Steel       | 30     |
| 30A                | 100/100/30A     | LH Side Front Clamp Angle              | Steel           | BS 4360 43A           | 2      |
| 30B                | 100/100/30B     | RH Side Front Clamp Angle              | Steel           | BS 4360 43A           | 2      |
| 30C                | 100/100/30C     | RH Side Rear Clamp Angle               | Steel           | BS 4360 43A           | 2      |
| 30D                | 100/100/30D     | LH Side Rear Clamp Angle               | Steel           | BS 4360 43A           | 2      |
| 30E                | 100/100/30E     | Rear Clamp Angle                       | Steel           | BS 4360 43A           | 2      |
| 31A                | 100/100/31A     | Hex Head Set Screw - M10 x 30mm lg     | 316 \$          | Stainless Steel       | 8      |
| 31B                | 100/100/31B     | Hex Head Set Screw - M10 x 35mm lg     | 316 \$          | Stainless Steel       | 12     |
| 31C                | 100/100/31C     | Hex Head Set Screw - M10 x 40mm lg     | 316 \$          | Stainless Steel       | 4      |
| 31D                | 100/100/31D     | Hex Head Set Screw - M10 x 45mm lg     | 316 \$          | Stainless Steel       | 4      |
| 32A                | 100/100/32A     | Nut - M10                              | 316 \$          | Stainless Steel       | 32     |
| 32B                | 100/100/32B     | Spring Washer - M10                    | 316 \$          | Stainless Steel       | 32     |
| 32C                | 100/100/32C     | Flat Washer - M10                      | 316 \$          | Stainless Steel       | 8      |
| 33                 | 100/100/33      | Mud Recovery Module (Secondary Scr     | eens) Steel     | BS 4360 43A           | 2      |
|                    |                 | Consumable item to be specified/purcha | ased separately | 7                     |        |
| 34A                | 100/100/34A     | Bottom Wear Strip (Front)              | Steel           | BS 4360 43A           | 4      |
| 34B                | 100/100/34B     | Bottom Wear Strip (Rear)               | Steel           | BS 4360 43A           | 4      |
| 35                 | 100/100/35      | Spray Bar Assembly                     | 316 \$          | Stainless Steel       | 1      |
| 36                 | 100/100/36      | Spray Bar Mounting Brackets            | Steel           | BS 4360 43A           | 1 Pair |



#### LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

| 8.2                | VIBRATORY       | DRIVE UNIT Drawing No. 1             | 00-101 Rev F                                  |    |
|--------------------|-----------------|--------------------------------------|-----------------------------------------------|----|
| Item<br><u>N°:</u> | Part N°: Name o | <u>f Part:</u>                       | N° Parts<br><u>Material:</u> <u>per Unit:</u> |    |
| 2LH                | 100/101/02LH    | Drive Guard Left Hand                | Steel BS 4360 43A                             | 1  |
| 2RH                | 100/101/02RH    | Drive Guard Right Hand               | Steel BS 4360 43A                             | 1  |
| 4                  | 100/101/04      | Plug                                 | Rubber                                        | 2  |
| 7 *                | 100/101/07      | Banjo Assembly                       | Brass ) Grease                                | 4  |
| 8 *                | 100/101/08      | Tubing                               | Nylon ) System                                | 4  |
| 9 *                | 100/101/09      | Grease Nipple & Bulkhead Adaptor     | Brass ) Kit                                   | 4  |
| 12                 | 100/101/12B     | 'A' Section Belts                    | Rubber                                        | 6  |
| 14B                | 100/101/14B     | Hex Head Set Screw - M20 x 70 lg     | 316 Stainless Steel                           | 8  |
| 15                 | 100/101/15      | Nyloc Nut M20                        | 316 Stainless Steel                           | 8  |
| 16                 | 100/101/16      | Spring Washer - M20                  | 316 Stainless Steel                           | 8  |
| 17                 | 100/101/17      | Hex Head Set Screw - M8 x 20 lg      | 316 Stainless Steel                           | 20 |
| 18                 | 100/101/18      | Spring /Flat Washers - M8            | 316 Stainless Steel                           | 20 |
| *                  | Note:           | Part Nos 100/101/07 08 & 09 are supr | lied                                          |    |

**Note:** Part Nos. 100/101/07, 08 & 09 are supplied as a kit assembly only and cannot be purchased separately



#### LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

| 0.5                |               | Diawing No. 10                                                  | Drawing 100. 100-102 Rev E |                       |   |
|--------------------|---------------|-----------------------------------------------------------------|----------------------------|-----------------------|---|
| Item<br><u>N°:</u> | Part N°: Name | of Part:                                                        | Material:                  | N° Parts<br>per Unit: |   |
| 1                  | 100/102/01    | <sup>1</sup> /4" BSP Pressure Regulator c/w locking             | facility Steel             |                       | 1 |
| 1A                 | 100/102/01A   | 0 - 100 PSI Pressure Gauge                                      | Plastic                    |                       | 1 |
| 2                  | 100/102/02    | <sup>1</sup> /4" x <sup>3</sup> /8" BSP Straight Male Adaptor   | Steel                      |                       | 2 |
| 3                  | 100/102/03    | <sup>1</sup> /4" BSP Straight Male Adaptor                      | Steel                      |                       | 2 |
| 4                  | 100/102/04    | <sup>1</sup> /4" Dowty Bonded Washer                            | Steel                      |                       | 6 |
| 5                  | 100/102/05    | <sup>1</sup> /4" BSP Shut-off Vent Valve                        | Steel                      |                       | 1 |
| 5A                 | 100/102/05A   | <sup>1</sup> /4" BSP Check Valve                                | Brass                      |                       | 1 |
| 6                  | 100/102/06    | <sup>3</sup> /8" ID Braided Hose: 0 - 30 m                      | Nylon/                     | /PVC                  | 1 |
| 6A                 | 100/102/06A   | <sup>3</sup> /8" BSP Female 90° Hose End                        | Steel                      |                       | 1 |
| 6B                 | 100/102/06B   | N° 6 JIC Female Hose End c/w clips                              | 316 Sta                    | ainless Steel         | 1 |
| 7                  | 100/102/07    | N° 6 JIC Elbow - Male to Female                                 | 316 Sta                    | ainless Steel         | 1 |
| 8                  | 100/102/08    | <sup>1</sup> /4" NPT Male to No. 8 JIC Male<br>Bulkhead Adaptor | 316 Sta                    | ainless Steel         | 2 |
| 8A                 | 100/102/08A   | Tube End Reducer c/w Nut<br>N° 8 JIC Female - No. 6 JIC Male    | 316 Sta                    | ainless Steel         | 1 |
| 9                  | 100/102/09    | <sup>1</sup> /4" NPT Pipe Tee - Female                          | 316 Sta                    | ainless Steel         | 2 |
| 10                 | 100/102/10    | <sup>1</sup> /4" NPT Straight Adaptor - Male                    | 316 Sta                    | ainless Steel         | 2 |
| 11                 | 100/102/11    | <sup>1</sup> /4" NPT Quick Coupler                              | 316 Sta                    | ainless Steel         | 2 |
| 12                 | 100/102/12    | N° 4 JIC - $1/4$ " NPT Connector - Male                         | 316 Sta                    | ainless Steel         | 4 |
| 12A                | 100/10212A    | N° 4 JIC - No. 6 JIC Straight Adaptor - M                       | Male 316 Sta               | ainless Steel         | 2 |
| 13                 | 100/102/13    | $^{1}/_{4}$ " Braided Hose Assy x $9^{1}/_{2}$ " lg             | 316 St                     | St/Teflon Lined       | 2 |
| 14                 | 100/102/14    | Pneumoseal Clamping System - RH                                 | Nitrile                    | Rubber                | 1 |
| 15                 | 100/102/15    | <sup>1</sup> /4" Braided Hose Assy x 58" lg                     | 316 St                     | St/Teflon Lined       | 1 |
| 16                 | 100/102/16    | N° 4 JIC Blanking Nut                                           | 316 Sta                    | ainless Steel         | 1 |
| 17                 | 100/102/17    | Pneumoseal Clamping System - LH                                 | Nitrile                    | Rubber                | 1 |
| 18                 | 100/102/18    | Pneumatic Control Mounting Plate                                | Stainle                    | ess                   | 1 |

#### 8.3 CLAMPING SYSTEM Drawing No. 100-102 Rev E



LINEAR MOTION SHALE SHAKER

#### **OPERATING MANUAL**

#### Item N° Parts N°: Part Nº: Name of Part: Material: per Unit: 100/103/01A Retaining Plate - LH Steel BS 4360 43A 1 1A 1B 100/103/01B Retaining Plate - RH Steel BS 4360 43A 1 2 100/103/02 Belt Tensioner Arm Assy Steel BS 4360 43A 2 3 100/103/03 Bearing - Ball Steel 4 4 100/103/04 Roller Assembly Cast Steel 2 6 100/103/06 Circlip Spring Steel 2 100/103/07 316 Stainless Steel 4 7 Hex Head Bolt - M12 x 50mm lg 8 100/103/08 Spring Washer - M12 316 Stainless Steel 4 316 Stainless Steel 9 100/103/09 Nyloc Nut - M12 4 10 316 Stainless Steel 100/103/10 Socket Head Cap Screw M10 x 20mm lg 6 316 Stainless Steel 11 100/103/11 Spring Washer - M10 6 16 100/103/16 Bearing Housing Steel 4 4 16A 100/103/16A Bearing Housing Circlip Spring Steel 17 100/103/17 Labyrinth Sealing Ring Rubber 4 18 100/103/18 Bearing - Spherical Roller 4 Steel 19 2 100/103/19 Circlip Spring Steel 20 100/103/20 Bearing End Cap Steel 4 21 100/103/21 Bearing Housing Seal Rubber 4 22 100/103/22 Shaft Pulley (Refer to Chart - Drwg 100/103) Cast Steel 2 23 100/103/23 Taperlock Bush Cast Steel 2 24 Socket Head Grub Screw - 3/8" BSW x 5/8" lg 4 100/103/24 Steel Gr.12.9 25 100/103/25 Hex Head Bolt- M10 x 40 mm lg 316 Stainless Steel 32 26 100/103/26 Spring Washer - M10 316 Stainless Steel 32 28 100/103/28 Steel 2 Outrigger Housing 2 32 100/103/32 Drive Pulley (Refer to Chart - Drwg 100/103) Cast Steel 316 Stainless Steel 8 38 100/103/38 Hex Head Set Screw - M10 x 25mm lg

#### 8.4 TENSIONER, SHAFT & DRIVE ASSEMBLY Drawing No. 100-103 Rev K



LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

#### 8.4 TENSIONER, SHAFT & DRIVE ASSEMBLY Drawing No. 100-103 Rev K (ctd)

| Item<br><u>N°:</u> | Part N°: Name | of Part:                              | Material:   | N° Parts<br>per Unit: |   |
|--------------------|---------------|---------------------------------------|-------------|-----------------------|---|
| 39                 | 100/103/39    | Spring Washer - M10                   | 316 S       | tainless Steel        | 8 |
| 41                 | 100/103/41    | Circlip                               | Spring      | g Steel               | 2 |
| 44                 | 100/103/44    | Main Drive Shaft Assy                 | Steel       |                       | 2 |
| 45                 | 100/103/45    | Mainshaft Key                         | Key S       | Steel                 | 4 |
| 50*                | 100/103/50    | Electric Motor 1.65 kW - Totally Encl | osed Steel  |                       | 2 |
| 50A                | 100/103/50A   | Motor Adaptor Flange                  | Steel       |                       | 2 |
| 50B                | 100/103/50B   | Hex Headed Set Screw - M8 x 20mm      | lg 316 S    | tainless Steel        | 8 |
| 50C                | 100/103/50C   | M8 Shake Proof Washer                 | 316 S       | tainless Steel        | 8 |
| 51                 | 100/103/51    | Socket Head CSK Screw - M10 x 30m     | mlg 316 S   | tainless Steel        | 8 |
| 52                 | 100/103/52    | Hex Head Bolt - M10 x 35mm lg         | 316 S       | tainless Steel        | 8 |
| 53                 | 100/103/53    | Spring Washer - M10                   | 316 S       | tainless Steel        | 8 |
| 54                 | 100/103/54    | 1610 Taperlock Assembly c/w Grub S    | crews Steel |                       | 2 |
| 55                 | 100/103/55    | Electric Motor Key                    | Key S       | Steel                 | 2 |
| 60                 | 100/103/60    | Cooling Fan                           | Plasti      | c                     | 2 |
| 61                 | 100/103/61    | Washer - M10                          | 316 S       | tainless Steel        | 2 |
| 62                 | 100/103/62    | Spring Washer - M10                   | 316 S       | tainless Steel        | 2 |
| 63                 | 100/103/63    | Cap Screw - M10 x 80mm lg             | 316 S       | tainless Steel        | 2 |
| 64                 | 100/103/64    | Outrigger Bearing Housing c/w Bearing | ng Steel    |                       | 2 |
| 65                 | 100/103/65    | Outrigger Bearing                     | Steel       |                       | 2 |
| 66                 | 100/103/66    | Motor External Circlip                | Spring      | g Steel               | 4 |

\* State Motor Voltage and Frequency When Ordering



#### LINEAR MOTION SHALE SHAKER

## **OPERATING MANUAL**

#### 8.5 ELECTRIC STARTER BOX

Drawing No. 107-109 Rev C

| Item<br><u>N°:</u> | <u>Part N°:</u> | Name of Part:                                                         | <u>Qty:</u> |
|--------------------|-----------------|-----------------------------------------------------------------------|-------------|
| 1                  | 100/ELECT/ZS052 | Step-down Transformer                                                 | 1           |
| 2                  | 100/ELECT/RE521 | Contactor (110v Coil)                                                 | 2           |
| 3A                 | 100/ELECT/RE571 | Overload Relay 2.7 to 4.0 Amp<br>(for 415 - 480 Supply Voltage)       | 2           |
| 3B                 | 100/ELECT/RE664 | or<br>Overload Relay 4.0 to 6.0 Amp<br>(for 380 - 440 Supply Voltage) | 2           |
| 4                  | 100/ELECT/RE536 | Auxiliary Contactor Block N/C                                         | 2           |
| 5                  | 100/ELECT/FZ113 | Mains Fuse Holder                                                     | 6           |
| 6                  | 100/ELECT/ZZ550 | Mains Fuse 16 Amp                                                     | 6           |
| 7                  | 100/ELECT/FZ114 | Primary Fuse Holder                                                   | 2           |
| 8                  | 100/ELECT/ZX469 | Primary Fuse 1 Amp                                                    | 2           |
| 9                  | 100/ELECT/TE757 | Secondary Fuse Holder & Neutral Link Holder                           | 2           |
| 10                 | 100/ELECT/FZ057 | Secondary Fuse 2 Amp                                                  | 1           |
| 11                 | 100/ELECT/FZ050 | Neutral Link                                                          |             |
| 12                 | 100/ELECT/TE758 | Terminals                                                             |             |

| NB: | Complete Starter Part No.    | 100/Elect/01 |             |
|-----|------------------------------|--------------|-------------|
|     | Remote Stop/Start Part No.   | 100/Elect/02 | (Not Shown) |
|     | Electrical Flameproof Glands | 100/Elect/09 | (Not Shown) |
|     | Shrouds                      | 100/Elect/10 | (Not Shown) |
|     | Emergency Stop               | 100/Elect/24 |             |
|     | Isolator                     | 100/Elect/25 |             |
|     | Earthing Strap               | 100/Elect/26 |             |

Note: When ordering electrical spares please quote voltage, amperage and frequency.



#### LINEAR MOTION SHALE SHAKER

**OPERATING MANUAL** 

#### 8.6 **BASIC MAINTENANCE EQUIPMENT**

| 100/MAINT/01 | Screen Repair Compound Applicator Gun                |
|--------------|------------------------------------------------------|
| 100/MAINT/02 | Screen Repair Compound                               |
| 100/MAINT/05 | Assorted Stainless Steel Fasteners                   |
| 100/MAINT/06 | Main Shaft Bearing Housing Jacking Bolts M10 x 80 lg |
| 100/MAINT/07 | 400g cartridge Retinax LX2 Grease                    |


VSM 100 LINEAR MOTION SHALE SHAKER OPERATING MANUAL

# SECTION 9.0 -

## DRAWINGS

## **INDEX**

**Drawing No:** 

**Description:** 

| 100-100 | Basket Assembly Sheets 1 & 2             |
|---------|------------------------------------------|
| 100-101 | Vibratory Drive Unit MK IV               |
| 100-102 | Clamping System Assembly                 |
| 100-103 | Drive Assembly                           |
| 107-108 | Outrigger Bearing Installation Procedure |
| 107-109 | JL4/3 Twin Starter Box Assembly          |
| 107-110 | JL4/3 Twin Starter Wiring Diagram        |
| 107-130 | Vibratory Head Rotation Direction        |
| 107-133 | VSM 100 Bonding Arrangement              |
| 107-149 | Component Lifting Diagram                |
|         |                                          |

















A division of Rig Technology Limited A Varco<sub>o</sub> Company



•

#### VSM 100

## LINEAR MOTION SHALE SHAKER

### **OPERATING MANUAL**

| 8.2                | VIBRATORY DRIVE UNIT Drawing No. 100-101 Rev F |                                     |           |                              |    |  |
|--------------------|------------------------------------------------|-------------------------------------|-----------|------------------------------|----|--|
| Item<br><u>N°:</u> | n<br><u>Part N°: Name of Part:</u>             |                                     | Material: | N° Parts<br><u>per Unit:</u> |    |  |
| 2LH                | 100/101/02LH                                   | Drive Guard Left Hand               | Steel BS  | 4360 43A                     | 1  |  |
| 2RH                | 100/101/02RH                                   | Drive Guard Right Hand              | Steel BS  | 4360 43A                     | 1  |  |
| 4                  | 100/101/04                                     | Plug                                | Rubber    |                              | 2  |  |
| 7*                 | 100/101/07                                     | Banjo Assembly                      | Brass )   | Grease                       | 4  |  |
| 8 *                | 100/101/08                                     | Tubing                              | Nylon )   | System                       | 4  |  |
| 9*                 | 100/101/09                                     | Grease Nipple & Bulkhead Adaptor    | Brass )   | Kit                          | 4  |  |
| 12                 | 100/101/12B                                    | 'A' Section Belts                   | Rubber    |                              | 6  |  |
| 14B                | 100/101/14B                                    | Hex Head Set Screw - M20 x 70 lg    | 316 Stair | less Steel                   | 8  |  |
| 15                 | 100/101/15                                     | Nyloc Nut M20                       | 316 Stain | less Steel                   | 8  |  |
| 16                 | 100/101/16                                     | Spring Washer - M20                 | 316 Stair | less Steel                   | 8  |  |
| 17                 | 100/101/17                                     | Hex Head Set Screw - M8 x 20 lg     | 316 Stain | less Steel                   | 20 |  |
| 18                 | 100/101/18                                     | Spring /Flat Washers - M8           | 316 Stair | less Steel                   | 20 |  |
| *                  | Note                                           | Part Nos 100/101/07 08 & 09 are sun | mlied     |                              |    |  |

Note: Part Nos. 100/101/07, 08 & 09 are supplied as a kit assembly only and cannot be purchased separately



